788
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A review of uranium-based thin films

, , , , , & show all

References

  • K. Von Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58 (1986), pp. 519–531.
  • A. Fert, Nobel Lecture: Origin, development, and future of spintronics, Rev. Mod. Phys. 80 (2008), pp. 1517–1530.
  • P.A. Grünberg, Nobel Lecture: From spin waves to giant magnetoresistance and beyond, Rev. Mod. Phys. 80 (2008), pp. 1531–1540.
  • K. Moore, and G. van der Laan, Nature of the 5f states in actinide metals, Rev. Mod. Phys. 81 (2009), pp. 235–298.
  • G.R. Stewart, Unconventional superconductivity, Adv. Phys. 66 (2017), p. 75.
  • J.A. Mydosh and P.M. Oppeneer, Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2, Rev. Mod. Phys. 83 (2011), pp. 1301–1322.
  • C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys. 81 (2009), pp. 1551–1624.
  • P. Santini, S. Carretta, G. Caciuffo, R. Amoretti, N. Magnani, and G.H. Lander, Multipolar interactions in f-electron systems: The paradigm of actinide dioxides, Rev. Mod. Phys. 81 (2009), pp. 807–863.
  • G.H. Lander, M.S.S. Brooks, B. Lebech, P.J. Brown, O. Vogt, and K. Mattenberger, Measurement of giant magnetic anisotropy in a uranium compound, Appl. Phys. Lett. 57 (1990), pp. 989–991.
  • X. Zhang, H. Zhang, J. Wang, C. Felser, and S.C. Zhang, Actinide topological insulator materials with strong interaction, Science 335 (2012), pp. 1464–1466.
  • V. Ivanov, X. Wan, and S.Y. Savrasov, Topological insulator-to-Weyl semimetal transition in strongly correlated actinide system UNiSn, Phys. Rev. X. 9 (2019), p. 041055.
  • S. Ran, C. Eckberg, Q.P. Ding, Y. Furukawa, T. Metz, S.R. Saha, I.L. Liu, M. Zic, H. Kim, J. Paglione, and N.P. Butch, Nearly ferromagnetic spin-triplet superconductivity, Science 365 (2019), pp. 684–687.
  • D.L. Clark, D.A. Geeson, and R.J. Hanrahan, Plutonium Handbook, Vol. 6, American Nuclear Society La Grange Park, Illinois, 2019.
  • B.L. Scott, J.J. Joyce, T.D. Durakiewicz, R.L. Martin, T.M. McCleskey, E. Bauer, H. Luo, and Q. Jia, High quality epitaxial thin films of actinide oxides, and carbides, and nitrides: Advancing understanding of electronic structure of f-element materials, Coord. Chem. Rev. 266–267 (2014), pp. 137–154.
  • D. Aoki, K. Ishida, and J. Flouquet, Review of U-based Ferromagnetic Superconductors: Comparison between UGe2, URhGe and UCoGe, J. Phys. Soc. Japan 88 (2019), p. 022001.
  • J.L. Sarrao, L.A. Morales, J.D. Thompson, B.L. Scott, G.R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G.H. Lander, Plutonium-based superconductivity with a transition temperature above 18 K, Nature 420 (2002), pp. 297–299.
  • IAEA annual report 2021, Tech. Rep., International Atomic Energy Agency, Vienna, Austria, 2021.
  • D.H. Hurley, A. El-Azab, M.S. Bryan, M.W.D. Cooper, C.A. Dennett, K. Gofryk, L. He, M. Khafizov, G.H. Lander, M.E. Manley, J.M. Mann, C.A. Marianetti, K. Rickert, F.A. Selim, M.R. Tonks, and J.P. Wharry, Thermal energy transport in oxide nuclear fuel, Chem. Rev. 122 (2021), pp. 3711–3762.
  • S. Steeb, Elektronenbeugungs-untersuchung an einkristallen schichten von uranoxyden in berich von UO2 bis U4O9, J. Nuclear Mater. 3 (1961), pp. 235–236.
  • B. Navinsek, Epitaxial growth of UO2 thin films produced by cathode sputtering, J. Nuclear Mater. 40 (1971), pp. 338–340.
  • S. Nasu, K. Shiozawa, and T. Kikuchi, Electron microscopy observation of epitaxial UO2 films, J. Nuclear Mater. 42 (1972), pp. 307–316.
  • B.T.M. Willis, Position of oxygen atoms in UO2.13, Nature 197 (1963), pp. 755–756.
  • T. Gouder and C.A. Colmenares, A surface spectroscopy study of thin layers of uranium on polycrystalline palladium, Surf. Sci. 295 (1993), pp. 241–250.
  • S.L. Molodtsov, J. Boysen, M. Richter, P. Segovia, C. Laubschat, S.A. Gorovikov, A.M. Ionov, G.V. Prudnikova, and V.K. Adamchuk, Dispersion of 5f electron states: Angle-resolved photoemission on ordered films of U metal, Phys. Rev. B. 57 (1998), pp. 13241–13245.
  • S.L. Molodtsov, S.V. Halilov, M. Richter, A. Zangwill, and C. Laubschat, Interpretation of resonant photoemission spectra of solid actinide systems, Phys. Rev. Lett. 87 (2001), p. 017601.
  • L. Berbil-Bautista, T. Hänke, M. Getzlaff, R. Wiesendanger, I. Opahle, K. Koepernik, and M. Richter, Observation of 5f states in U/W (110) films by means of scanning tunnelling spectroscopy, Phys. Rev. B. 70 (2004), p. 113401.
  • Y.G. Hao, O. Eriksson, G.W. Fernando, and B.R. Cooper, Surface electronic structure of γ-uranium, Phys. Rev. B. 47 (1993), pp. 6680–6684.
  • N. Stojic, J.W. Davenport, M. Komelj, and J. Glimm, Surface magnetic moment in α-uranium by density-functional theory, Phys. Rev. B. 68 (2003), p. 094407.
  • M. Huth, J. Hessert, M. Jourdan, A. Kaldowski, and H. Adrian, Coherence effects in the low-temperature Hall coefficient of the heavy-fermion system UPd2Al3, Phys. Rev. B. 50 (1994), pp. 1309–1312.
  • M. Jourdan and H. Adrian, Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3, Nature 398 (1999), pp. 47–49.
  • M. Dressel, N. Kasper, K. Petukhov, D.N. Peligrad, B. Gorshunov, M. Jourdan, M. Huth, and H. Adrian, Correlation gap in the heavy-fermion antiferromagnet UPd2Al3, Phys. Rev. B. 66 (2002), p. 035110.
  • M. Jourdan, A. Zakharov, M. Foerster, and H. Adrian, Evidence for multiband superconductivity in the heavy fermion compound UNi2Al3, Phys. Rev. Lett. 93 (2004), p. 097001.
  • M. Foerster, A. Zakharov, and M. Jourdan, Anisotropic transport properties of UNi2Al3 thin films, Phys. Rev. B. 76 (2007), p. 144519.
  • N. Bernhoeft, A. Hiess, S. Langridge, A. Stunault, D. Wermeille, C. Vettier, G.H. Lander, M. Huth, M. Jourdan, and H. Adrian, Probe coherence volume and the interpretation of scattering experiments, Phys. Rev. Lett. 81 (1998), pp. 3419–3422.
  • P. Fumagalli, T.S. Plaskett, D. Weller, T.R. McGuire, and R.J. Gambino, Magneto-optical evidence for exchange-induced moment in uranium at room temperature observed in Co/U-As Multilayers, Phys. Rev. Lett. 70 (1993), pp. 230–233.
  • N. Kernavanois, D. Mannix, P. Dalmas de Reotier, J.P. Sanchez, A. Yaouanc, A. Rogalev, G.H. Lander, and W.G. Stirling, UAs/Co multilayers studied by x-ray magnetic circular dichroism at the U M4,5 edges, Phys. Rev. B. 69 (2004), p. 054405.
  • D.L. Smith, Thin-Film Deposition: Principles and Practise, McGraw-Hill Education, New York, 1995.
  • K. Reichelt and X. Jiang, The preparation of thin films by physical vapour deposition methods, Thin. Solid. Films. 191 (1990), pp. 91–126.
  • J.L. Vossen and W. Kern, Thin Film Processes 2, Academic Press Inc., New York, 1991.
  • T. Gouder, L. Havela, and J. Rebizant, Evidence for the 5f localisation in thin Pu layers, Europhys. Lett. 55 (2001), pp. 705–711.
  • R.C.C. Ward, R.A. Cowley, N. Ling, W. Goetze, G.H. Lander, and W.G. Stirling, The structure of epitaxial layers of uranium, J. Phys.: Condens. Matter 20 (2008), p. 135003.
  • Q. Chen, X. Lai, B. Bai, and M. Chu, Structural characterization and optical properties of UO2 thin films by magnetron sputtering, Appl. Surf. Sci. 256 (2010), pp. 3047–3050.
  • M.M. Strehle, B.J. Heuser, M.S. Elbakhshwan, X. Han, D.J. Gennardo, H.K. Pappas, and H. Ju, Characterization of single crystal uranium-oxide thin films grown via reactive-gas nmagnetron sputtering on yttria-stabilized zirconia and sapphire, Thin. Solid. Films. 520 (2012), pp. 5616–5626.
  • L. Havela, M. Paukov, M. Dopita, L. Horak, M. Cieslar, D. Drozdenko, P. Minarik, I. Turek, M. Divis, D. Legut, L. Kyvala, T. Gouder, F. Huber, A. Seibert, and E. Tereshina-Chitrova, XPS, UPS, and BIS study of pure and alloyed β-UH3 films: Electronic structure, bonding, and magnetism, J. Electron. Spectros. Relat. Phenomena. 239 (2020), p. 146904.
  • E.R. Gilroy, M.H. Wu, M. Gradhand, R. Springell, and C. Bell, Magnetic anisotropy in Fe/U and Ni/U bilayers, Phys. Rev. B. 103 (2021), p. 104426.
  • R. Springell, S.W. Zochowski, R.C.C. Ward, M.R. Wells, S.D. Brown, L. Bouchenoire, F. Wilhelm, S. Langridge, W.G. Stirling, and G.H. Lander, A study of uranium-based multilayers: I. Fabrication and structural characterization, J. Phys.: Condens. Matter 20 (2008), p. 215229.
  • R. Springell, S.W. Zochowski, R.C.C. Ward, M.R. Wells, S.D. Brown, L. Bouchenoire, F. Wilhelm, S. Langridge, and G.H. Lander, A study of uranium-based multilayers: II. Magnetic properties, J. Phys.: Condens. Matter 20 (2008), p. 215230.
  • L.M. Harding, E.L. Bright, J. Laverock, D.T. Goddard, and R. Springell, Epitaxial stabilisation of uranium silicide line compounds, Thin. Solid. Films. 768 (2023), p. 139690.
  • Z. Bao, R. Springell, H.C. Walker, H. Leiste, K. Kuebel, R. Prang, G. Nisbet, S. Langridge, R.C.C. Ward, T. Gouder, R. Caciuffo, and G.H. Lander, Antiferromagnetism in UO2 thin epitaxial films, Phys. Rev. B. 88 (2013), p. 134426.
  • M.S. Elbakhshwan and B.J. Heuser, Structural and compositional characterization of single crystal uranium dioxide thin films deposited on different substrates, Thin. Solid. Films. 636 (2017), pp. 658–663.
  • S. Rennie, E. Lawrence Bright, J.E. Sutcliffe, J.E. Darnbrough, R. Burrows, J. Rawle, C. Nicklin, G.H. Lander, and R. Springell, The role of crystal orientation in the dissolution of UO2 thin films, Corros. Sci. 145 (2018), pp. 162–169.
  • L. Black, F. Miserque, T. Gouder, L. Havela, J. Rebizant, and F. Wastin, Preparation and photoelectron spectroscopy study of UNx thin films, J. Alloys. Compd. 315 (2001), pp. 36–41.
  • E. Lawrence Bright, S. Rennie, M. Cattelan, N.A. Fox, D.T. Goddard, and R. Springell, Epitaxial UN and α-U2N3 thin films, Thin. Solid. Films. 661 (2018), pp. 71–77.
  • M. Eckle and T. Gouder, Photemission study of UNxOy and UCxOy in thin films, J. Alloys. Compd. 374 (2004), pp. 261–264.
  • L. Havela, M. Paukov, M. Dopita, L. Horak, D. Drozdenko, M. Divis, I. Turek, D. Legut, L. Kyyvala, T. Gouder, A. Seibert, and F. Huber, Crystal structure and magnetic properties of uranium hydride UH2 stabilized as a thin film, Inorg. Chem. 57 (2018), p. 14727.
  • P. Fewster, X-Ray Scattering From Semiconductors And Other Materials, 3rd ed., World Scientific Publishing Company, Singapore, 2015.
  • J.P. Goff, Rare-earth thin films and superlattices, J. Phys.: Condens. Matter 32 (2020), p. 374009.
  • A. Barthélémy, A. Fert, M.N. Baibich, S. Hadjoudj, and F. Petroff, Magnetic and transport properties of Fe/Cr superlattices, J. Appl. Phys. 67 (1990), pp. 5908–5913.
  • E. Enriquez, G. Wang, Y. Sharma, I. Sarpkaya, Q. Wang, D. Chen, N. Winner, X. Guo, J. Dunwoody, J. White, A. Nelson, H. Xu, P. Dowden, E. Batista, H. Htoon, P. Yang, Q. Jia, and A. Chen, Structural and optical properties of phase-pure UO2, α-U3O8, and α-UO3 epitaxial thin films grown by pulsed laser deposition, ACS. Appl. Mater. Interfaces. 12 (2020), pp. 35232–35241.
  • Y. Sharma, B. Paudel, A. Huon, M.M. Schneider, P. Roy, Z. Corey, R. Schönemann, A.C. Jones, M. Jaime, D.A. Yarotski, T. Charlton, M.R. Fitzsimmons, Q. Jia, M.T. Pettes, P. Yang, and A. Chen, Induced ferromagnetism in epitaxial uranium dioxide thin films, Adv. Sci. 9 (2022), p. 2203473.
  • A. Raauf, J. Leduc, M. Frank, D. Stadler, D. Graf, and M. Wilhelm, Magnetic Field-Assisted Chemical Vapour Deposition of UO2 Thin Films, Inorg. Chem. 60 (2021), pp. 1915–1921.
  • M.D. Straub, J. Leduc, M. Frank, A. Raauf, T.D. Lohrey, S.G. Minasian, S. Mathur, and J. Arnold, Magnetic Field-Assisted Chemical Vapour Deposition of UO2 Thin Films, Angew. Chem. 58 (2019), pp. 5749–5753.
  • T.T. Meek, B. Von Roedern, P.G. Clem, and R.J. Hanrahan Jr, Some optical properties of intrinsic and doped UO2 thin films, Mater. Lett. 59 (2005), pp. 1085–1088.
  • A.K. Burrell, T.M. McCleskey, P. Shukla, H. Wang, T. Durakiewicz, D.P. Moore, C.G. Olson, J.J. Joyce, and Q. Jia, Controlling oxidation states in uranium oxides through epitaxial stabilization, Adv. Mater. 19 (2007), pp. 3559–3563.
  • J.J. Joyce, T. Durakiewicz, K. Graham, E.D. Bauer, D.P. Moore, J.N. Mitchell, J.A. Kennison, T.M. McCleskey, Q.X. Jia, A.K. Burrell, E. Bauer, R.L. Martin, L.E. Roy, and G.E. Scuseria, 5f Electronic Structure and Fermiology of Pu Materials, Mater. Res. Soc. Symp. Proc. 1264 (2010), pp. Z09–04.
  • M.P. Wilkerson, J.M. Dorhout, K.S. Graham, J. Joyce, I.I. Kruk, J. Majewski, D.T. Olive, A.L. Pugmire, B.L. Scott, J.T. Stritzinger, G.L. Wagner, E.B. Watkins, and L.E. Wolfsberg, Structural properties, thicknesses, and qualities of plutonium oxide thin films prepared by polymer assisted deposition, Surf. Sci. 701 (2020), p. 121696.
  • X. Huang, Q. Chen, W. Pan, and Y. Yao, Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review, Sensors 22 (2022), p. 5112.
  • C.H. Wu, W.H. Weber, T.J. Potter, and M.A. Tamor, Laser reflective interferometry for in situ monitoring of diamond film growth by chemical vapor deposition, J. Appl. Phys. 73 (1993), pp. 2977–2982.
  • G.J.H.M. Rijnders, G. Koster, and D.H.A. Blank, In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure, Appl. Phys. Lett. 70 (1997), pp. 1888–1890.
  • J.P. Podkaminer, J.J. Patzner, and B.A. Davidson, Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth, APL. Mater. 4 (2016), p. 08611.
  • M. Harke, R. Teppner, and O. Schulz, Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy, Rev. Sci. Instrum. 68 (1997), pp. 3130–3134.
  • R. Temple and R.C.C. Ward, Epitaxial growth of UO2 films by UHV magnetron sputtering, Internal report, University of Oxford, 2010.
  • M.A. Hove, W.H. Weinberg, and C.H. Chan, Low-Energy Electron Diffraction, Springer, Berlin, 2012.
  • W. Braun, Applied RHEED, Springer, Berlin, 2007.
  • A. Ichimiya and P.I. Cohen, Reflection High-Energy Electron Diffraction, Cambridge University Press, Cambridge, 2004.
  • J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity, Springer, Berlin, 2009.
  • L. Nevot and P. Croce, Caractérisation des surfaces par réflexion rasante de rayons X, Rev. Phys. Appl. 15 (1980), pp. 761–779.
  • V. Holy, J. Kubena, I. Ohlidal, and W. Plotz, X-ray reflection from rough layered systems, Phys. Rev. B. 47 (1993), pp. 15896–15903.
  • G. Vignaud and A. Gibaud, REFLEX: a program for the analysis of specular X-ray and neutron reflectivity data, J. Appl. Crystallogr. 52 (2019), pp. 201–213.
  • A. Nelson, Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT, J. Appl. Crystallogr. 39 (2006), pp. 273–276.
  • M. Bjorck and G. Andersson, GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution, J. Appl. Crystallogr. 40 (2007), pp. 1174–1178.
  • L.G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Phys. Rev. 95 (1954), pp. 359–369.
  • L. Harding, Evaluating the corrosion behaviour of uranium silicide phases, Ph.D. diss., University of Bristol, 2021.
  • H. Zabel, X-ray and neutron reflectivity analysis of thin films and superlattices, Appl. Phys. A 58 (1994), pp. 159–168.
  • S.K. Sinha, E.B. Sirota, S. Garoff, and H.B. Stanley, X-ray and neutron scattering from rough surfaces, Phys. Rev. B. 38 (1988), pp. 2297–2311.
  • E.E. Fullerton, I.K. Schuller, and Y. Bruynseraede, Quantitative X-Ray Diffraction From Superlattices, MRS Bull. 17 (1992), pp. 33–38.
  • I.K. Schuller and Y. Bruynseraede, Quantitative X-ray diffraction from thin films, Nanostructured Materials 1 (1992), pp. 387–395.
  • B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, Pearson, Harlow, UK, 2014.
  • S. Rennie, Engineering UO2 thin films to investigate nuclear fuel behaviour, Ph.D. diss., University of Bristol, 2017.
  • G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall. 1 (1952), pp. 22–31.
  • A. Borbély, The modified Williamson-Hall plot and dislocation density evaluation from diffraction peaks, Scr. Mater. 217 (2022), p. 114768.
  • T. Murotani, H. Hirose, T. Sasaki, and K. Okazaki, Study on stress measurement of PVD-coating layer, Thin. Solid. Films. 377 (2000), pp. 617–620.
  • Q. Luo, A modified X-ray diffraction method to measure residual normal and shear stresses of machined surfaces, Int. J. Adv. Manuf. Technol. 119 (2022), pp. 3595–3606.
  • A.R. Wildes, R.C.C. Ward, M.R. Wells, J.P. Hill, and R.A. Cowley, High-resolution x-ray scattering from epitaxial thin films of Y/Nb on Al2O3, J. Phys.: Condens. Matter 32 (2020), p. 374006.
  • W.C. Marra, P. Eisenberger, and A.Y. Cho, X-ray total-external-reflection–Bragg diffraction: A structural study of the GaAs-Al interface, J. Appl. Phys. 50 (1979), pp. 6927–6933.
  • M. Neuschitzer, A. Moser, A. Neuhold, J. Kraxner, B. Stadlober, M. Oehzelt, I. Salzmann, R. Resel, and J. Novák, Grazing-incidence in-plane X-ray diffraction on ultra-thin organic films using standard laboratory equipment, J. Appl. Crystallogr. 45 (2012), pp. 367–370.
  • L. Reimer, Scanning Electron Microscopy, Springer, Berlin, 1998.
  • D. Tomus and H.P. Ng, In situ lift-out dedicated techniques using FIB–SEM system for TEM specimen preparation, Micron 44 (2013), pp. 115–119.
  • J. Wasik, Oxidation of uranium dioxide, Ph.D. diss., University of Bristol, 2021.
  • D. Dingley, G. Meaden, D.J. Dingley, and A.P. Day, A review of EBSD: from rudimentary on line orientation measurements to high resolution elastic strain measurements over the past 30 years., IOP Conf. Ser.: Mater. Sci. Eng. 375 (2018), p. 012003.
  • C.B. Carter and D.B. Williams, Transmission Electron Microscopy, Springer, Berlin, 2016.
  • T.W. Hansen and J.B. Wagner, Controlled Atmosphere Transmission Electron Microscopy, Springer, Berlin, 2015.
  • F. Hofer, F.P. Schmidt, W. Grogger, and G. Kothleitner, Fundamentals of electron energy-loss spectroscopy, IOP Conf. Ser.: Mater. Sci. Eng. 109 (2016), p. 012007.
  • C. Jeynes and J.L. Colaux, Thin film depth profiling by ion beam analysis, Analyst 141 (2016), pp. 5944–5985.
  • N.T. Kim-Ngan, A. Balogh, L. Havela, and T. Gouder, Ion beam mixing in uranium nitride thin films studied by Rutherford Backscattering Spectroscopy, Nucl. Instrum. Methods Phys. Res. B 268 (2010), pp. 1875–1879.
  • I.O. Usov, R.M. Dickerson, P.O. Dickerson, D.D. Byler, and K.J. McClellan, Uranium dioxide films with xenon filled bubbles for fission gas behavior studies, J. Nuclear Mater. 452 (2014), pp. 173–177.
  • H.Y. Chiang, S.H. Park, M. Mayer, K. Schmid, M. Balden, U. Boesenberg, R. Jungwirth, G. Falkenberg, T. Zweifel, and W. Petry, Swift heavy ion irradiation induced interactions in the UMo/X/Al trilayer system (X = Ti, Zr, Nb, and Mo): RBS and μ-XRD studies, J. Alloys Comp. 626 (2015), pp. 381–390.
  • S.G. Robson, A.M. Jakob, D. Holmes, S.Q. Lim, B.C. Johnson, and D.N. Jamieson, High-resolution Rutheerford backscattering spectrometry with an optimised solid-state detector, Nucl. Inst. Methods Phys. Res. B 487 (2021), pp. 1–7.
  • S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer, Berlin, 2012.
  • N.G.K. Krishna and J. Philip, Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges, Appl. Surf. Sci. Adv. 12 (2022), p. 100332.
  • C.R. Brundle and B.V. Crist, X-ray photoelectron spectroscopy: A perspective on quantitation accuracy for composition analysis of homogeneous materials, J. Vac. Sci. Technol. A 38 (2020), p. 041001.
  • G.C. Allen, P.M. Tucker, and J.W. Tyler, Oxidation of Uranium Dioxide at 298 K Studied by Using X-ray Photoelectron Spectroscopy, J. Phys. Chem. 86 (1982), pp. 224–228.
  • B.G. Santos, H.W. Nesbitt, and D.W. Shoesmith, X-ray photoelectron spectroscopy study of anodically oxidized SIMFUEL surfaces., Electrochim. Acta. 49 (2004), pp. 1863–1873.
  • G.H. Lander, E.S. Fisher, and S.D. Bader, The solid-state properties of uranium: A historical perspective and review, Adv. Phys. 43 (1994), pp. 1–111.
  • J. Donohue, The Structures of the Elements, John Wiley & Sons Ltd., New York, 1974.
  • A.C. Lawson, C.E. Olsen, J.W. Richardson, M.H. Mueller, and G.H. Lander, Structure of β-uranium, Acta Crystallogr. B: Struct. Sci. 44 (1988), pp. 89–96.
  • C.W. Jacob and B.E. Warren, The crystalline structure of uranium, J. Am. Chem. Soc. 59 (1937), pp. 2588–2591.
  • M.S.S. Brooks, Band structure calculations for f-electron systems, Phys. B 206&207 (1995), pp. 1–7.
  • P. Söderlind, O. Eriksson, B. Johansson, J.M. Wills, and A.M. Boring, A unified picture of the crystal structure of metals, Nature 374 (1995), pp. 524–525.
  • B. Mettout, V.P. Dmitriev, M.B. Jaber, and P. Toledano, Theory of reconstructive transformations in actinide elements: Packing of nonspherical atoms and macroscopic symmetries, Phys. Rev. B. 48 (1993), pp. 6908–6912.
  • M.I. McMahon, Probing extreme states of matter using ultra-intense x-ray radiation, J. Phys.: Condens. Matter 34 (2021), p. 043001.
  • C.C. McPheeters, E.C. Gay, P.J. Karell, and J.P. Ackerman, Electrometallurgically treating metal, oxide, and al alloy spent nuclear fuel types, JOM 49 (1997), p. 7.
  • A.N. Holden, Growth and crystallography of deformation of β-phase uranium single crystals , Acta Cryst. 5 (1952), pp. 182–184.
  • W.P. Crummett, H.G. Smith, R.M. Nicklow, and N. Wakabayashi, Lattice dynamics of α uranium, Phys. Rev. B. 19 (1979), pp. 6028–6037.
  • H.G. Smith, N. Wakabayashi, W.P. Crummett, R.M. Nicklow, G.H. Lander, and E.S. Fisher, Observation of a charge-density wave in α-U at low temperature, Phys. Rev. Lett. 44 (1980), pp. 1612–1615.
  • J. Bouchet, Lattice dynamics of α uranium, Phys. Rev. B. 77 (2008), p. 024113.
  • J.C. Lashley, B.E. Lang, J. Boerio-Goates, B.F. Woodfield, G.M. Schmiedeshoff, E.C. Gay, C.C. McPheeters, D.J. Thoma, W.L. Hults, J.C. Cooley, R.J. Hanrahan Jr, and J.L. Smith, Low-temperature specific heat and critical magnetic field of α-uranium single crystals, Phys. Rev. B. 63 (2001), p. 224510.
  • J.L. O'Brien, A.R. Hamilton, R.G. Clark, C.H. Mielke, J.L. Smith, J.C. Cooley, D.G. Rickel, R.P. Starrett, D.J. Reilly, N.E. Lumpkin, R.J. Hanrahan, and W.L. Hults, Magnetic susceptibility of the normal-superconducting transition in high-purity single-crystal α-uranium, Phys. Rev. B. 66 (2002), p. 064523.
  • D. Graf, R. Stillwell, T.P. Murphy, J.H. Park, M. Kano, E.C. Palm, P. Schlottmann, J. Bourg, K.N. Collar, J.C. Cooley, J.C. Lashley, J. Wilit, and S.W. Tozer, Fermi surface of α-uranium at ambient pressure, Phys. Rev. B. 80 (2009), p. 241101(R).
  • S. Raymond, J. Bouchet, G.H. Lander, M. Le Tacon, G. Garbarino, M. Hoesch, J.P. Rueff, M. Krisch, J.C. Lashley, R.K. Schulze, and R.C. Albers, Understanding the complex phase diagram of uranium: the role of electron-phonon coupling, Phys. Rev. Lett. 107 (2011), p. 136401.
  • C.S. Barrett, M.H. Mueller, and R.L. Hitterman, Crystal structure variations in Alpha-uranium at low temperatures, Phys. Rev. 129 (1963), pp. 625–629.
  • A.M. Beesley, M.F. Thomas, A.D.F. Herring, R.C.C. Ward, M.R. Wells, S. Langridge, S.D. Brown, S.W. Zochowski, L. Bouchenoire, W.G. Stirling, and G.H. Lander, Magnetism of uranium/iron multilayers: I. Fabrication and characterization, J. Phys.: Condens. Matter 16 (2004), pp. 8491–8505.
  • A.M. Beesley, S.W. Zochowski, M.F. Thomas, A.D.F. Herring, S. Langridge, S.D. Brown, R.C.C. Ward, M.R. Wells, R. Springell, and G.H. Lander, Magnetism of uranium/iron multilayers: II. Magnetic properties, J. Phys.: Condens. Matter 16 (2004), pp. 8507–8518.
  • R. Springell, S. Langridge, A. Wildes, S.B. Wilkins, C. Sanchez-Hanke, K.T. Moore, M.T. Butterfield, J. Chivall, R.C.C. Ward, M.R. Wells, and G.H. Lander, Chemical and magnetic structure of uranium/gadolinium multilayers studied by transmission, electron microscopy, neutron scattering, and x-ray reflectivity, Phys. Rev. B. 81 (2010), p. 134434.
  • R. Springell, R.C.C. Ward, J. Bouchet, J. Chivall, D. Wermeille, P.S. Normile, S. Langridge, S.W. Zochowski, and G.H. Lander, Malleability of uranium: Manipulating the charge-density wave in epitaxial films, Phys. Rev. B. 89 (2014), p. 245101.
  • R. Springell, B. Detlefs, G.H. Lander, R.C.C. Ward, R.A. Cowley, N. Ling, W. Goetze, R. Ahuja, W. Luo, and B. Johansson, Elemental engineering: Epitaxial uranium thin films, Phys. Rev. B. 78 (2008), p. 193403.
  • A.M. Adamska, R. Springell, and T.B. Scott, Characterization of poly- and single-crystal uranium–molybdenum alloy thin films, Thin. Solid. Films. 550 (2014), pp. 319–325.
  • D. Chaney, A. Castellano, A. Bosak, J. Bouchet, F. Bottin, B. Dorado, L. Paolasini, S. Rennie, R. Springell, and G.H. Lander, Tuneable correlated disorder in alloys, Phys. Rev. Materials. 5 (2021), p. 035004.
  • R.C.C. Ward, E.J. Grier, and A.K. Petford-Long, MBE growth of (110) refractory metals on a-plane sapphire, J. Mater. Sci.: Mater. Electron. 14 (2003), pp. 533–539.
  • Q. Chen, S. Tan, W. Feng, L. Luo, X. Zhu, and X. Lai, Direct observation of the f–c hybridization in the ordered uranium films on W(110), Chin. Phys. B 28 (2019), p. 077404.
  • J.D. Axe, G. Grübel, and G.H. Lander, Structure and phase transformations in uranium metal, J. Alloys. Compd. 213/214 (1994), pp. 262–267.
  • S. Schonecker, M. Richter, K. Koepernik, and H. Eschrig, Ferromagnetic elements by epitaxial growth: A density functional prediction, Phys. Rev. B. 85 (2012), p. 024407.
  • R. Nicholls, C. Bell, R. Springell, G.H. Lander, and J. Bouchet, Structure and phase transitions of metastable hexagonal uranium thin films, Phys. Rev. Materials. 6 (2022), p. 103407.
  • A.E. Dwight, The uranium-molybdenum equilibrium diagram below 900∘C, J. Nuclear Mater. 2 (1960), pp. 81–87.
  • D. Chaney, A study of the relationship between correlated displacive disorder, metastability and lattice dynamics using the epitaxially stabilised alloy system γs-(U1−xMox), Ph.D. diss., University of Bristol, 2021.
  • P.R. Roy and D.N. Sah, Irradiation behaviour of nuclear fuels, Pramãna 24 (1985), pp. 397–421.
  • V. van den Berghe and P. Lemoine, Review of 15 years of high-density low-enrichment UMo dispersion fuel for research reactors in Europe, Nucl. Eng. Technol. 46 (2014), pp. 125–146.
  • K. Tangri, Les phases gamma métastables dans les alliages d'uranium contenant du molybdnène., Mem. Sci. Rev. Met. 58 (1961), pp. 469–477.
  • H.L. Yakel, Crystal structures of transition phases formed in U/16.60 at% Nb/5.64 at% Zr alloys, J. Nucl. Mater. 33 (1969), pp. 286–295.
  • I. Tkach, N.T. Kim-Ngan, S. Mašková, M. Dzevenko, L. Havela, A. Warren, C. Stitt, and T. Scott, Characterization of cubic γ-phase uranium molybdenum alloys synthesized by ultrafast cooling, J. Alloys Comp. 534 (2012), pp. 101–109.
  • A.M. Adamska, R. Springell, A.D. Warren, L. Picco, and T.B. Scott, Growth and characterization of uranium–zirconium alloy thin films for nuclear industry applications, J. Phys. D: Appl. Phys. 47 (2014), p. 315301.
  • F. Wilhelm, N. Jaouen, A. Rogalev, W.G. Stirling, R. Springell, S.W. Zochowski, A.M. Beesley, S.D. Brown, M.F. Thomas, G.H. Lander, S. Langridge, R.C.C. Ward, and M.R. Wells, X-ray magnetic circular dichroism study of uranium/iron multilayers, Phys. Rev. B. 76 (2007), p. 024425.
  • S.D. Brown, L. Bouchenoire, P. Thompson, R. Springell, A. Mirone, W.G. Stirling, A. Beesley, M.F. Thomas, R.C.C. Ward, M.R. Wells, S. Langridge, S.W. Zochowski, and G.H. Lander, Profile of the U 5f magnetization in U/Fe multilayers, Phys. Rev. B. 77 (2008), p. 014427.
  • M.F. Thomas, A.M. Beesley, and M.R. Wells, A Mössbauer study of the interface in U/Fe multilayers, J. Phys.: Condens. Matter 20 (2008), p. 365204.
  • M. Komelj and N. Stojić, Ab initio investigation of magnetism in two-dimensional uranium systems, Phys. Rev. B. 71 (2005), p. 052410.
  • R. Springell, F. Wilhelm, A. Rogalev, W.G. Stirling, R.C.C. Ward, M.R. Wells, S. Langridge, S.W. Zochowski, and G.H. Lander, Polarization of U 5f states in uranium multilayers, Phys. Rev. B. 77 (2008), p. 064423.
  • S. Singh, M. Anguera, E. del Barco, R. Springell, and C.W. Miller, Moderate positive spin Hall angle in uranium, Appl. Phys. Lett. 107 (2015), p. 232403.
  • K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C.H.W. Barnes, S. Maekawa, and E. Saitoh, Electrically tunable spin injector free from impedance mismatch problems, Nat. Mater. 10 (2011), pp. 655–659.
  • O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, and A. Hoffmann, Quantifying spin Hall angles from spin pumping: Experiments and theory, Phys. Rev. Lett. 104 (2010), p. 046601.
  • E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L.E. Hueso, Y. Niimi, Y. Otani, and F. Casanova, Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime, Phys. Rev. B 94 (2016), p. 060412(R).
  • M.H. Wu, H. Rossignol, and M. Gradhand, Spin-dependent transport in uranium, Phys. Rev. B. 101 (2020), p. 224411.
  • M.H. Wu, A. Fabian, and M. Gradhand, Spin accumulation in metallic thin films induced by electronic impurity scattering, Phys. Rev. B. 104 (2021), p. 184421.
  • T. Ajantiwalay, C. Smith, D.D. Keiser, and A. Aitkaliyeva, A critical review of the microstructure of U-Mo fuels, J. Nucl. Mater. 540 (2020), p. 152386.
  • H.L. Yakel, A review of x-ray diffraction studies in uranium alloys, Tech. Rep., Oak Ridge National Laboratory, 1974.
  • R.M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, W. Schmid, J. Schneider, and N. Wieschalla, Physical properties of monolithic U 8wt.%-Mo, J. Nucl. Mater. 402 (2010), pp. 74–80.
  • D.A. Lopes, T.A.G. Restivo, and A.F. Padilha, Mechanical and thermal behaviour of U–Mo and U–Nb–Zr Alloys, J. Nucl. Mater. 440 (2013), pp. 304–309.
  • Z.E. Brubaker, S. Ran, A.H. Said, M.E. Manley, P. Söderlind, D. Rosas, Y. Idell, R.J. Zieve, N.P. Butch, and J.R. Jeffries, Phonon dispersion of Mo-stabilized γ-U measured using inelastic x-ray scattering, Phys. Rev. B. 100 (2019), p. 094311.
  • A. Girard, T. Nguyen-Thanh, S.M. Souliou, M. Stekiel, W. Morgenroth, L. Paolasini, A. Minelli, D. Gambetti, and A. Bosak, A new diffractometer for diffuse scattering studies on the ID28 beamline at the ESRF, J. Synchrotron. Radiat. 26 (2019), pp. 272–279.
  • P. Söderlind, B. Grabowski, L. Yang, A. Landa, T. Bjorkman, and O. Eriksson, High-temperature phonon stabilization of γ-uranium from relativistic first-principles theory, Phys. Rev. B. 85 (2012), p. 060301(R).
  • webpage, ID28 – inelastic scattering II. Available at https://www.esrf.fr/home/UsersAndScience/Experiments/EMD/ID28.html.
  • S. Rennie, E. Lawrence Bright, J.E. Darnbrough, L. Paolasini, A. Bosak, A.D. Smith, N. Mason, G.H. Lander, and R. Springell, Study of phonons in irradiated epitaxial thin films of UO2, Phys. Rev. B. 97 (2018), p. 224303.
  • J. Serrano, A. Bosak, M. Krisch, F.J. Manjón, A.H. Romero, N. Garro, X. Wang, A. Yoshikawa, and K. M., InN thin film lattice dynamics by grazing incidence inelastic x-ray scattering, Phys. Rev. Lett. 106 (2011), p. 205501.
  • A.R. Overy, A.B. Cairns, M.J. Cliffe, A. Simonov, M.G. Tucker, and A.L. Goodwin, Design of crystal-like aperiodic solids with selective disorder-phonon coupling., Nat. Commun. 7 (2016), p. 10445.
  • J. Bouchet and F. Bottin, High-temperature and high-pressure phase transitions in uranium, Phys. Rev. B. 95 (2017), p. 054113.
  • A. Castellano, F. Bottin, B. Dorado, and J. Bouchet, Thermodynamic stabilization of γ-U–Mo alloys: effect of Mo content and temperature, Phys. Rev. B. 101 (2020), p. 184111.
  • L. Havela, T. Gouder, F. Wastin, and J. Rebizant, Photoelectron spectroscopy study of the 5f localization in Pu, Phys. Rev. B. 65 (2002), p. 235118.
  • R.L. Sandberg, D.D. Allred, S. Lunt, M.K. Urry, and R.S. Turley, Optical properties and application of uranium-based thin films for the extreme ultraviolet and soft x-ray region, in Optical Constants of Materials for UV to X-Ray Wavelengths, Vol. 5538., SPIE, 2004, pp. 107–118.
  • D.D. Allred, M.B. Squires, R.S. Turley, W. Cash, and A. Shipley, X-ray mirrors, crystals and multilayers, SPIE 4782 (2002), pp. 212–223.
  • H. Idriss, Surface reactions of uranium oxide powder, thin films and single crystals, Surf. Sci. Rep. 65 (2010), pp. 67–109.
  • W.P. Ellis and T.N. Taylor, He+ ion scattering spectroscopy studies of UO2 (hkl) surfaces, Surf. Sci. 91 (1980), pp. 409–422.
  • W.P. Ellis and T.N. Taylor, Distorted surface oxygen structure on UO2 (100), Surf. Sci. 107 (1981), pp. 249–262.
  • F. Bottin, G. Geneste, and G. Jomard, Thermodynamic stability of the UO2 surfaces: Interplay between over-stoichiometry and polarity compensation, Phys. Rev. B. 93 (2016), p. 115438.
  • J.E. Stubbs, A.M. Chaka, E.S. Ilton, C.A. Biwer, M.H. Engelhard, J.R. Bargar, and P.J. Eng, UO2 Oxidative Corrosion by Nonclassical Diffusion, Phys. Rev. Lett. 114 (2015), p. 246103.
  • J.E. Stubbs, C.A. Biwer, A.M. Chaka, E.S. Ilton, Y. Du, J.R. Bargar, and P.J. Eng, Oxidative corrosion of the UO2 (001) surface by nonclassical diffusion, Langmuir 33 (2017), pp. 13189–13196.
  • A. Seibert, D.H. Wegen, T. Gouder, J. Römer, T. Wiss, and J.P. Glatz, The use of the electrochemical quartz crystal microbalance (EQCM) in corrosion studies of UO2 thin film models, J. Nucl. Mater. 419 (2011), pp. 112–121.
  • S.R. Spurgeon, M. Sassi, C. Ophus, J.E. Stubbs, E.S. Ilton, and E.C. Buck, Nanoscale oxygen defect gradients in UO2+x surfaces, Proc. Nat. Acad. Sci. 116 (2019), pp. 17181–17186.
  • A.H.H. Tan, M. Abramowski, R.W. Grimes, and S. Owens, Surface defect configurations on the (100) dipolar surface of UO2, Phys. Rev. B. 72 (2005), p. 035457.
  • P. Maldonado, L.Z. Evins, and P.M. Oppeneer, Ab initio atomistic thermodynamics of water reacting with uranium dioxide surfaces, J. Phys. Chem. C 118 (2014), pp. 8491–8500.
  • J.P.W. Wellington, A. Kerridge, J. Austin, and N. Kaltsoyannis, Electronic structure of bulk AnO2 (An = U, Np, Pu) and water adsorption on the (111) and (110) surfaces of UO2 and PuO2 from hybrid density functional theory within the periodic electrostatic embedded cluster method, J. Nucl. Mater. 482 (2016), pp. 124–134.
  • G.H. Lander and R. Caciuffo, The fifty years it has taken to understand the dynamics of UO2 in its ordered state, J. Phys.: Condens. Matter 32 (2020), p. 374001.
  • G.M. Watson, D. Gibbs, G.H. Lander, B.D. Gaulin, L.E. Berman, H. Matzke, and W. Ellis, X-Ray scattering study of the magnetic structure near the (001) surface of UO2, Phys. Rev. Lett. 77 (1996), pp. 751–754.
  • G.M. Watson, D. Gibbs, G.H. Lander, B.D. Gaulin, L.E. Berman, H. Matzke, and W. Ellis, Resonant x-ray scattering studies of the magnetic structure near the surface of an antiferromagnet, Phys. Rev. B. 61 (2000), pp. 8966–8975.
  • S. Langridge, G.M. Watson, D. Gibbs, J.J. Betouras, N.I. Gidopoulos, F. Pollmann, M.W. Long, C. Vettier, and G.H. Lander, Distinct magnetic phase transition at the surface of an antiferromagnet, Phys. Rev. Lett. 112 (2014), p. 167201.
  • J.K. Gibson, Laser ablation synthesis of actinide selenide, oxide and oxide–selenide clusters: AnSen+, AnxOm+ and AnxOmSen+ [An = U, Np, Pu], J. Alloys. Compd. 290 (1999), pp. 52–62.
  • F. Miserque, T. Gouder, D.H. Wegen, and P.D.W. Bottomley, Use of UO2 films for electrochemical studies, J. Nucl. Mater. 298 (2001), pp. 280–290.
  • A.M. Adamska, E. Lawrence Bright, J. Sutcliffe, W. Liu, O.D. Payton, L. Picco, and T.B. Scott, Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications, Thin. Solid. Films. 597 (2015), pp. 57–64.
  • M. Jaime, A. Saul, M. Salamon, V.S. Zapf, N. Harrison, T. Durakiewicz, J.C. Lashley, D.A. Andersson, C.R. Stanek, and K. Gofryk, Piezomagnetism and magnetoelastic memory in uranium dioxide, Nat. Commun. 8 (2017), p. 9.
  • A. Arrott and J.E. Goldman, Magnetic analysis of the uranium-oxygen system, Phys. Rev. 108 (1957), pp. 948–953.
  • G.H. Lander, M. Sundermann, R. Springell, A. Walters, A. Nag, G. van der Laan, and R. Caciuffo, Resonant inelastic x-ray spectroscopy on UO2 as a test case for actinide materials, J. Phys.: Condens. Matter 33 (2021), p. 06LT01.
  • K. Yakushijia, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasab, and K. Ando, Ultrathin co/pt and co/pd superlattice films for mgo-based perpendicular magnetic tunnel junctions, Appl. Phys. Lett. 97 (2010), p. 232508.
  • W.H. Meiklejohn and C.P. Bean, New magnetic anisotropy, Phys. Rev. 102 (1956), pp. 1413–1414.
  • E.A. Tereshina, Z. Bao, L. Havela, S. Danis, C. Kuebel, T. Gouder, and R. Caciuffo, Exchange bias in UO2/Fe3O4 thin films above the Neel temperature of UO2, Appl. Phys. Lett. 105 (2014), p. 122405.
  • E.A. Tereshina, S. Daniš, R. Springell, Z. Bao, L. Havela, and R. Caciuffo, Crystal structure and magnetic properties of UO2/permalloy thin films, Thin. Solid. Films. 591 (2015), pp. 271–275.
  • D.W. Shoesmith, Fuel corrosion processes under waste disposal conditions, J. Nucl. Mater. 282 (2000), pp. 1–31.
  • R. Springell, S. Rennie, L. Costelle, J. Darnbrough, C. Stitt, E. Cocklin, C. Lucas, R. Burrows, H. Sims, D. Wermeille, J. Rawle, C. Nicklin, W. Nuttall, T. Scott, and G.H. Lander, Water corrosion of spent nuclear fuel: radiolysis driven dissolution at the UO2/water interface, Faraday. Discuss. 180 (2015), pp. 301–311.
  • Z. Rák, R. Ewing, and U. Becker, Hydroxylation-induced surface stability of AnO2 (An = U, Np, Pu) from first-principles, Surf. Sci. 608 (2013), pp. 180–187.
  • J.C. Wren, D.W. Shoesmith, and S. Sunder, Corrosion behavior of uranium dioxide in alpha radiolytically decomposed water, J. Electrochem. Soc. 152 (2005), p. B470.
  • C. Ronchi, M. Sheindlin, D. Staicu, and M. Kinoshita, Effect of burn-up on the thermal conductivity of uranium dioxide up to 100,000 MWdt−1, J. Nucl. Mater. 327 (2004), pp. 58–76.
  • C. Ronchi, I.L. Iosilevski, and E.S. Yakub, Equation of State of Uranium Dioxide: Data Collection, Berlin, Springer Science & Business Media, 2004.
  • M.T. Hutchings, High-temperature studies of UO2 and ThO2 using neutron scattering techniques, J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 83 (1987), pp. 1083–1103.
  • G. Dolling, R.A. Cowley, and A.D.B. Woods, The crystal dynamics of uranium dioxide, Can. J. Phys. 43 (1965), pp. 1397–1413.
  • J.W.L. Pang, W.J.L. Buyers, A. Chernatynskiy, M.D. Lumsden, B.C. Larson, and S.R. Phillpot, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory, Phys. Rev. Lett. 110 (2013), p. 157401.
  • J.W.L. Pang, A. Chernatynskiy, B.C. Larson, W.J.L. Buyers, D.L. Abernathy, K.J. McClellan, and S.R. Phillpot, Phonon density of states and anharmonicity of UO2, Phys. Rev. B. 89 (2014), p. 115132.
  • T. Wiss, J.P. Hiernaut, D. Roudil, J.Y. Colle, E. Maugeri, Z. Talip, A. Janssen, V. Rondinella, R.J.M. Konings, H.J. Matzke, and W.J. Weber, Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, J. Nucl. Mater. 451 (2014), pp. 198–206.
  • L. Paolasini, D. Chaney, G.H. Lander, and R. Caciuffo, Anisotropy in cubic UO2 caused by electron-lattice interactions, Phys. Rev. B. 104 (2021), p. 024305.
  • P.B. Weisensee, J.P. Feser, and D.G. Cahill, Effect of ion irradiation on the thermal conductivity of UO2 and U3O8 epitaxial layers, J. Nucl. Mater. 443 (2013), pp. 212–217.
  • P. Maldonado, L. Paolasini, P.M. Oppeneer, T.R. Forrest, A. Prodi, N. Magnani, A. Bosak, G.H. Lander, and R. Caciuffo, Crystal dynamics and thermal properties of neptunium dioxide, Phys. Rev. B. 93 (2016), p. 144301.
  • A.J. Popel, A.M. Adamska, P.G. Martin, O.D. Payton, G.I. Lampronti, L. Picco, L. Payne, R. Springell, T.B. Scott, I. Monnet, C. Grygiel, and I. Farnan, Structural effects in UO2 thin films irradiated with U ions, Phys. Rev. 386 (2016), pp. 8–15.
  • A.J. Popel, V.A. Lebedev, P.G. Martin, A.A. Shiryaev, G.I. Lampronti, R. Springell, S.N. Kalmykov, T.B. Scott, I. Monnet, C. Grygiel, and I. Farnan, Structural effects in UO2 thin films irradiated with fission-energy Xe ions, J. Nucl. Mater. 482 (2016), pp. 210–217.
  • Y.A. Teterin, A.J. Popel, K.I. Maslakov, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, R. Springell, T.B. Scott, and I. Farnan, XPS study of ion irradiated and unirradiated UO2 thin films, Inorg. Chem. 55 (2016), pp. 8059–8070.
  • A.J. Popel, V.G. Petrov, V.A. Lebedev, J. Day, S.N. Kalmykov, R. Springell, T.B. Scott, and I. Farnan, The effect of fission-energy Xe ion irradiation on dissolution of UO2 thin films, J. Alloys. Compd. 721 (2017), pp. 586–592.
  • K.I. Maslakov, Y.A. Teterin, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykova, V.G. Petrov, R. Springell, T.B. Scott, and I. Farnan, XPS study of the surface chemistry of UO2 (111) single crystal film, Appl. Surf. Sci. 433 (2018), pp. 582–588.
  • E.L. Bright, L. Xu, L.M. Harding, R. Springell, A.C. Walters, M. Sundermann, M. Garcia-Fernandez, S. Agrestini, R. Caciuffo, G. van der Laan, and G.H. Lander, Resonant inelastic x-ray scattering from U3O8 and UN, J. Phys.: Condens. Matter 35 (2023), p. 175501.
  • R. Caciuffo, G.H. Lander, and G. van der Laan, Synchrotron radiation techniques and their application to actinide materials, Rev. Mod. Phys. 95 (2023), p. 015001.
  • F. Garrido, A.C. Hannon, R.M. Ibbotson, L. Nowicki, and B.T.M. Willis, Neutron diffraction studies of U4O9: Comparison with EXAFS results, Inorg. Chem. 45 (2006), pp. 8408–8413.
  • G. Rousseau, L. Desgranges, F. Charlot, N. Millot, J.C. Niepce, M. Pijolat, F. Valdivieso, G. Baldinozzi, and J.F. Berar, A detailed study of UO2 to U3O8 oxidation phases and the associated rate-limiting steps, J. Nucl. Mater. 355 (2006), pp. 10–20.
  • J. Wang, R.C. Ewing, and U. Becker, Average structure and local configuration of excess oxygen in UO2+x, Sci. Rep. 4 (2014), pp. 4216–4221.
  • J.M. Elorrieta, L.J. Bonales, N. Rodrıguez-Villagra, and J. Cobos, A detailed Raman and X-ray study of UO2+x oxides and related structure transitions, Phys. Chem. Chem. Phys. 18 (2016), pp. 28209–28216.
  • I. Kruk, B.L. Scott, E.B. Watkins, and L.E. Wolfsberg, Growth and characterization of uranium oxide thin films deposited by polymer assisted deposition, Thin. Solid. Films. 735 (2021), p. 138874.
  • B.O. Loopstra, Neutron diffraction investigation of U3O8, Acta. Crystallogr. 17 (1964), pp. 651–654.
  • G. Leinders, R. Bes, J. Pakarinen, K. Kvashnina, and M. Verwerft, Evolution of the Uranium Chemical State in Mixed-Valence Oxides, Inorg. Chem. 56 (2017), pp. 6784–6787.
  • G.C. Allen and N.R. Holmes, A mechanism for the UO2 to α-U3O8 phase transformation, J. Nucl. Mater. 223 (1995), pp. 231–237.
  • R.D. Shannon and R.C. Rossi, Definition of topotaxy, Nature 202 (1964), pp. 1000–1001.
  • T. Mairoser, J.A. Mundy, A. Melville, D. Hodash, P. Cueva, R. Held, A. Glavic, J. Schubert, D.A. Muller, and A. Schmehl, High-quality EuO thin films the easy way via topotactic transformation, Nat. Commun. 6 (2015), p. 7716.
  • T. McGuire, T. Plaskett, P. Fumagalli, R. Gambino, N. Bojarczuk, and B. Argyle, Magnetic and transport properties of amorphous u-as-cu films, J. Magn. Magn. Mater. 116 (1992), pp. 18–20.
  • R.J. Gambino, T.S. Plaskett, T.R. McGuire, and M.W. McElfresh, Giant magneto-optic rotation in amorphous uranium antimonide, J. Appl. Phys. 69 (1991), pp. 4750–4755.
  • T. Gouder, R. Eloirdi, F. Wastin, E. Colineau, J. Rebizant, D. Kolberg, and F. Huber, Electronic structure of UH3 thin films prepared by sputter deposition, Phys. Rev. B. 70 (2004), p. 235108.
  • M. Huth, A. Kaldowski, J. Hessert, T. Steinborn, and H. Adrian, Preparation and characterization of thin films of the heavy fermion superconductor UPd2Al3, Solid. State. Commun. 87 (1993), pp. 1133–1136.
  • R. Troc and W. Suski, The discovery of the ferromagnetism in U(H,D)3: 40 years later, J. Alloys. Compd. 219 (1995), pp. 1–5.
  • S.T. Lin and A.R. Kaufmann, Magnetic properties of beta-uranium hydride, Phys. Rev. 102 (1956), pp. 640–646.
  • L. Havela, D. Legut, and J. Kolorenĉ, Hydrogen in actinides: electronic and lattice properties, Rep. Prog. Phys. 86 (2023), p. 056501.
  • E.A. Tereshina-Chitrova, L. Havela, M. Paukov, O. Koloskova, L. Horák, M. Dopita, M.M. Celis, M. Cieslar, Z. Šobáň, T. Gouder, and F. Huber, Synthesis and physical properties of uranium thin-film hydrides UH2 and UH3, Thin. Solid. Films. 775 (2023), p. 139860.
  • R.M. Harker, The influence of oxide thickness on the early stages of the massive uranium hydrogen reaction, J. Alloys. Compd. 426 (2006), pp. 106–117.
  • R. Orr, H. Godfrey, C. Broan, D. Goddard, G. Woodhouse, P. Durham, A. Diggle, and J. Bradshaw, Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage, J. Nucl. Mater. 477 (2016), pp. 236–245.
  • J.E. Darnbrough, R.M. Harker, I. Griffiths, D. Wermeille, G.H. Lander, and R. Springell, Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction, J. Nucl. Mater. 502 (2018), pp. 9–19.
  • S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2014), pp. 374–379.
  • R. Troc, M. Samsel-Czekała, A. Pikul, A.V. Andreev, D.I. Gorbunov, Y. Skourski, and J. Sznajd, Electronic structure of UN based on specific heat and field-induced transitions up to 65 T, Phys. Rev. B. 94 (2016), p. 224415.
  • S. Fujimori, T. Ohkochi, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Onuki, Itinerant nature of U 5f states in uranium mononitride revealed by angle-resolved photoelectron spectroscopy, Phys. Rev. B. 86 (2012), p. 235108.
  • T.M. Holden, W.J.L. Buyers, E.C. Svensson, and G.H. Lander, Magnetic excitations in uranium nitride, Phys. Rev. B. 30 (1984), pp. 114–121.
  • N.A. Curry, An investigation of the magnetic structure of uranium nitride by neutron diffraction, Proc. Phys. Soc. 86 (1965), pp. 1193–1198.
  • D. Rafaja, L. Havela, R. Kužel, F. Wastin, E. Colineau, and T. Gouder, Real structure and magnetic properties of UN thin films, J. Alloys. Compd. 386 (2005), pp. 87–95.
  • L. Havela, K. Miliyanchuk, D. Rafaja, T. Gouder, and F. Wastin, Structure and magnetism of thin UX layers, J. Alloys. Compd. 408–412 (2006), pp. 1320–1323.
  • J.A.C. Marples, C.F. Sampson, and M. Kuznietz, Actinide pnictides and chalcogenides: IV. X-ray search for tetragonal distortion in UN and UAs in the antiferromagnetic state, J. Phys. C: Solid State Phys. 8 (1975), pp. 708–716.
  • E. Lawrence Bright, R. Springell, D.G. Porter, S.P. Collins, and G.H. Lander, Synchrotron x-ray scattering of magnetic and electronic structure of UN and U2N3 epitaxial films, Phys. Rev. B. 100 (2019), p. 134426.
  • H.W. Knott, G.H. Lander, M.H. Mueller, and O. Vogt, Search for lattice distortions in UN, UAs, and USb at low temperatures, Phys. Rev. B. 21 (1980), pp. 4159–4165.
  • N. Magnani, R. Caciuffo, G.H. Lander, A. Hiess, and L.P. Regnault, Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide, J. Phys.: Condens. Matter 22 (2010), p. 116002.
  • R. Troc, Magnetic susceptibility of the uranium nitrides, J. Solid State Chem. 13 (1975), pp. 14–23.
  • R.M. Moon, W.C. Koehler, H.R. Child, and L.J. Raubenheimer, Magnetic structures of Er2O3 and Yb2O3, Phys. Rev. 176 (1968), pp. 722–731.
  • E. Lawrence Bright, S. Rennie, A. Siberry, K. Samani, K. Clarke, D.T. Goddard, and R. Springell, Comparing the corrosion of uranium nitride and uranium dioxide surfaces with H2O2, J. Nucl. Mater. 518 (2019), pp. 202–207.
  • S.P. Collins, D. Laundy, and A. Stunault, Anisotropic resonant diffraction from HoFe2, J. Phys.: Condens. Matter 13 (2001), pp. 1891–1905.
  • J. Kokubun and V.E. Dmitrienko, Anisotropic resonant X-ray scattering: Beauty of forbidden reflections, Eur. Phys. J. Spec. Topics 208 (2012), pp. 39–52.
  • E. Lawrence Bright, J.E. Darnbrough, D.T. Goddard, I. Griffiths, M. Cattelan, and R. Springell, Oxidation and passivation of the uranium nitride (001) surface, Corros. Sci. 209 (2022), pp. 0–6.
  • K. Liu, L. Luo, L. Luo, Z. Long, Z. Hong, H. Yang, and S. Wu, Initial oxidation behaviors of nitride surfaces of uranium by XPS analysis, Appl. Surf. Sci. 280 (2013), pp. 268–272.
  • L. Lu, F. Li, Y. Hu, H. Xiao, B. Bai, Y. Zhang, L. Luo, J. Liu, and K. Liu, The initial oxidation behaviors of uranium nitride UNx (x=0, 0.23, 0.68, 1.66) films, J. Nucl. Mater. 480 (2016), pp. 189–194.
  • L. Luo, L. Lu, D. Zhao, H. Zhang, T. Jing, and K. Liu, Surface oxidation on U2N(3+x)Oy films in oxygen atmosphere by XPS, J. Electron. Spectros. Relat. Phenomena. 217 (2017), pp. 6–10.
  • L. Luo, Y. Hu, Q. Pan, Z. Long, L. Lu, K. Liu, and X. Wang, Extended study on oxidation behaviors of UN0.6 and UN1.66 by XPS, J. Nucl. Mater. 501 (2018), pp. 371–380.
  • L. Luo, Q. Pan, Y. Hu, K. Liu, and X. Wang, Insight into the initial oxidation of UN1.85 thin films, Appl. Surf. Sci. 525 (2020), p. 146535.
  • W.H. Zachariasen, Crystal chemical studies of the 5f-series of elements. VIII. Crystal structure studies of uranium silicides and of CeSi2 , NpSi2 , and PuSi2, Acta. Crystallogr. 2 (1949), pp. 94–99.
  • H. Okamoto, Si-U (Silicon-uranium), J. Phase Equilibria Diffus. 34 (2013), pp. 167–168. Available at https://link.springer.com/article/10.1007/s11669-012-0183-0.
  • S.C. Middleburgh, R.W. Grimes, E.J. Lahoda, C.R. Stanek, and D.A. Andersson, Non-stoichiometry in U3Si2, J. Nucl. Mater. 482 (2016), pp. 300–305.
  • J.L. Snelgrove, G.L. Hofman, C.L. Trybus, and T.C. Wiencek, Development of very-high-density fuels by the RERTR program, Tech. Rep., US DOE, 1996.
  • K. Remschnig, T.L. Bihan, H. Noël, and P. Rogl, Structural chemistry and magnetic behavior of binary uranium silicides, J. Solid. State. Chem. 97 (1992), pp. 391–399.
  • D.J. Antonio, K. Shrestha, J.M. Harp, C.A. Adkins, Y. Zhang, J. Carmack, and K. Gofryk, Thermal and transport properties of U3Si2, J. Nucl. Mater. 508 (2018), pp. 154–158.
  • J.T. White, A.T. Nelson, J.T. Dunwoody, D.D. Byler, D.J. Safarik, and K.J. Mcclellan, Thermophysical properties of U3Si2 to 1773 K, J. Nucl. Mater. 464 (2015), pp. 275–280.
  • E. Kardoulaki, D.D. Byler, J. Bárta, and K.J. McClellan, Tri-arc growth and characterization of U3Si2 and U3Si5 single crystals, J. Cryst. Growth. 558 (2021), p. 126025.
  • J.M. Harp, P.A. Lessing, and R.E. Hoggan, Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation, J. Nucl. Mater. 466 (2015), pp. 728–738.
  • S.I. Fujimori, Y. Saito, K.I. Yamaki, T. Okane, N. Sato, T. Komatsubara, S. Suzuki, and S. Sato, The electronic structure of U/Si(100), studied by x-ray photoelectron spectroscopy, J. Electron. Spectros. Relat. Phenomena. 88-91 (1998), pp. 631–635.
  • S.I. Fujimori, Y. Saito, K.I. Yamaki, T. Okane, N. Sato, T. Komatsubara, S. Suzuki, and S. Sato, Photoemission study of the U/Si(111) interface, Surf. Sci. 444 (2000), pp. 180–186.
  • J.J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103, At. Data Nucl. Data Tables 32 (1985), pp. 1–155.
  • Y. Sasa and M. Uda, Structure of stoichiometric USi2, J. Solid. State. Chem. 18 (1976), pp. 63–68.
  • C.A. Dennett, N. Poudel, P.J. Simmonds, A. Tiwari, D.H. Hurley, and K. Gofryk, Towards actinide heterostructure synthesis and science, Nat. Commun. 13 (2022), pp. 1–4.
  • K.D. Vallejo, F. Kabir, N. Poudel, C. Marianetti, D.H. Hurley, P. Simmonds, C.A. Dennett, and K. Gofryk, Advances in actinide thin films: synthesis, properties, and future directions, Rep. Prog. Phys. 85 (2022), p. 123101.
  • A. Lopez-Bezanilla, f-Orbital based Dirac states in a two-dimensional uranium compound, J. Phys.: Mater. 3 (2020), p. 024002.
  • M. Zarshenas and S.J. Asadabadi, Theoretical study of α-U/W (110) thin films from density functional theory calculations: Structural, magnetic and electronic properties, Thin. Solid. Films. 520 (2012), pp. 2901–2908.
  • E.B. Isaacs and C.A. Marianetti, Compositional phase stability of correlated electron materials within DFT+ DMFT, Phys. Rev. B. 102 (2020), p. 045146.
  • G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, and C.A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78 (2006), pp. 865–951.
  • S.P. Rudin, Pb-Pu superlattices: An example of nanostructured actinide materials, Phys. Rev. Lett. 98 (2007), p. 116401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.