58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A New Methodological Approach to Study the Interaction of Humic Acids, Minerals and Polyvalent Cations in Soil

ORCID Icon, , , , &
Pages 1663-1674 | Received 24 Jan 2023, Accepted 20 Feb 2024, Published online: 28 Feb 2024

References

  • ACDD, International Centre for Diffraction Data. 1993. Mineral powder diffraction file. Pennsylvania: Swarthmore.
  • Alvarez-Puebla, R. A., and J. J. Garrido. 2005. Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere 59 (5):659–67. doi:10.1016/j.chemosphere.2004.10.021.
  • Bono, A., R. Alvarez, D. E. Buschiazzo, and R. J. Cantet. 2008. Tillage effects on soil carbon balance in a semiarid agroecosystem. Soil Science Society of America Journal 72 (4):1140–49. doi:10.2136/sssaj2007.0250.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal 54 (5):464–65. doi:10.2134/agronj1962.00021962005400050028x.
  • Brunetti, G., G. N. Mezzapesa, A. Traversa, E. Bonifacio, K. Farrag, N. Senesi, and V. D’Orazio. 2016. Characterization of clay and silt sized fractions and corresponding humic acid along a terra rossa soil profile. Clean Soil Air Water 44 (10):1375–84. doi:10.1002/clen.201500857.
  • Buschiazzo, D. E., T. M. Zobeck, and S. B. Aimar. 1999. Wind erosion in loess soils of the semiarid Argentinean pampas. Soil Science 164 (2):133–38. doi:10.1097/00010694-199902000-00008.
  • Chen, H., L. K. Koopal, J. Xiong, M. Avena, and W. Tan. 2017. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science 504:457–67. doi:10.1016/j.jcis.2017.05.078.
  • Chen, Y., N. Senesi, and M. Schnitzer. 1977. Information provided on humic substances by E2/E3 ratio. Soil Science Society of America Journal 41 (2):352–58. doi:10.2136/sssaj1977.03615995004100020037.
  • Cheshire, M. V., C. Dumat, A. R. Fraser, S. Hillier, and S. Stauton. 2000. The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. European Journal of Soil Science 51 (3):497–509. doi:10.1111/j.1365-2389.2000.00325.x.
  • Chilom, G. and J. A. Rice. 2009. Organo-clay complexes in soils and sediments. In Biophysico-chemical processes involving natural nonliving organic matter in environmental systems, ed. N. Senesi, B. Xing, and P. Min Huang, 111–33. New Jersey: John Wiley.
  • Colombo, C., G. Palumbo, and J. Zheng He. 2014. Review on iron availability in soil: Interaction of Fe minerals, plants and microbes. Journal of Soils & Sediments 14 (3):538–48. doi:10.1007/s11368-013-0814-z.
  • Coutinho, H. L., E. Noellemeyer, F. C. Balieiro, G. Piñeiro, E. C. C. Fidalgo, C. Martius, and C. F. Silva. 2015. Impacts of land-use change on carbon stocks and dynamics in central-southern south American biomes. In Soil carbon: Science, management and policy for multiple benefits, ed. S. A. Banwart, E. J. Noellemeyer, and E. Milne, 243–64. Wallingford: CABI Publishing.
  • D’Angelo, E. M., C. Kovzelove, and A. D. Karathanasis. 2009. Carbon sequestration processes in temperate soils with different chemical properties and management histories. Soil Science 174 (1):45–55. doi:10.1097/SS.0b013e318195b7f8.
  • Di Rienzo, J., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo. 2015. Infostat versión 2015.
  • Drosos, M., A. Nebbioso, P. Mazzei, G. Vinci, R. Spaccini, and A. Piccolo. 2017. A molecular zoom into soil humeome by a direct sequential chemical fractionation of soil. Science of the Total Environment 586:807–16. doi:10.1016/j.scitotenv.2017.02.059.
  • Falsone, G., L. Celi, S. Stanchi, and E. Bonifacio. 2016. Relative importance of mineralogy and organic matter characteristics on macroaggregate and colloid dynamic in Mg-silicate dominated soils. Land Degradation & Development 27 (7):1700–08. doi:10.1002/ldr.2516.
  • Fernández, R., A. Quiroga, C. Álvarez, C. Lobartini, and E. Noellemeyer. 2016. Valores umbrales de algunos indicadores de calidad de suelos en molisoles de la región semiárida pampeana. Ciencia del Suelo 34 (2):279–92.
  • Hayes, T. M., M. H. B. Hayes, and R. S. Swift. 2012. Detailed investigation of organic matter components in extracts and drainage waters from a soil under long term cultivation. Organic Geochemistry 52:13–22. doi:10.1016/j.orggeochem.2012.07.011.
  • Heckman, K., C. R. Lawrenceb, and J. W. Harden. 2018. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma 312:24–35. doi:10.1016/j.geoderma.2017.09.043.
  • Hepper, E. N., D. E. Buschiazzo, G. G. Hevia, A. Urioste, and L. Antón. 2006. Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma 135:216–23. doi:10.1016/j.geoderma.2005.12.005.
  • Hevia, G. G., D. E. Buschiazzo, E. N. Hepper, A. M. Urioste, and A. L. Urioste. 2003. Organic matter in size fractions of soils of the semiarid Argentina. Effects of climate, soil texture and management. Geoderma 116 (3–4):265–77. doi:10.1016/S0016-7061(03)00104-6.
  • Hosse, M., and K. J. Wilkinson. 2001. Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environmental Science & Technology 35 (21):4301–06. doi:10.1021/es010038r.
  • Huber, V., I. Neher, B. L. Bodirsky, K. Hofner, and H. J. Schellnhuber. 2014. Will the world run out of land? A kaya-type decomposition to study past trends of cropland expansion. Environmental Research Letters 9 (2):024011. doi:10.1088/1748-9326/9/2/024011.
  • Iturri, L. A., and D. E. Buschiazzo. 2014. Cation exchange capacity and mineralogy of loess soils with different amounts of volcanic ashes. Catena 121:81–7. doi:10.1016/j.catena.2014.04.021.
  • Jackson, M. L., C. H. Lim, and L. W. Zelazny. 1986. Chapter 6.Oxides, hydroxides and aluminosilicates. In Methods of analysis. part 1. physical and mineralogical methods, ed. A. Klute, 101–50. Madison Wisconsin: ASA-SSSA.
  • Johnson, B., and G. A. Zulueta. 2013. Land-use land-cover change and ecosystem loss in the Espinal region, Argentina. Agriculture, Ecosystems & Environment 181:31–40. doi:10.1016/j.agee.2013.09.002.
  • Kloster, N., and M. Avena. 2015. Interaction of humic acids with soil minerals. Adsorption and surface aggregation induced by Ca2+. Environmental Chemistry 12 (6):731–38. doi:10.1071/EN14157.
  • Kloster, N., M. Brigante, G. Zanini, and M. Avena. 2013. Aggregation kinetics of humic acids in the presence of calcium ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 427:76–82. doi:10.1016/j.colsurfa.2013.03.030.
  • Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528 (7580):60–8. doi:10.1038/nature16069.
  • MacCarthy, P. and J. A. Rice. 1985. Spectroscopic methods (other than NMR) for determining functionality in humic substances. In Humic substances in soil, sediment and water, ed. G. R. Aiken, D. M. Mcknight, R. L. Wershaw, and P. MacCarthy, 527–59. Canada, John Wiley & Sons.
  • Molina, F. V. 2014. Soil colloids properties and ion binding. Boca Raton: CRC Press.
  • Noellemeyer, E., F. Frank, C. Alvarez, G. Morazzo, and A. Quiroga. 2008. Carbon contents and aggregation related to soil physical and biological properties under a land use sequence in the semiarid region of central Argentina. Soil & Tillage Research 99 (2):179–90. doi:10.1016/j.still.2008.02.003.
  • Perkin-Elmer. 1982. Analytical methods for atomic absorption spectrophotometry. Waltham: Perkin-Elmer Inc.
  • Plaza, I., A. Ontiveros-Ortega, J. Calero, and V. Aranda. 2015. Implications of zeta potential and surface free energy in the description of agricultural soil quality: Effect of different cations and humic acid on degraded soils. Soil & Tillage Research 146:148–58. doi:10.1016/j.still.2014.10.013.
  • Plaza, C., C. Zaccone, K. Sawicka, A. M. Méndez, A. Tarquis, G. Gascó, G. B. M. Heuvelink, E. A. G. Schuur, and F. T. Maestre. 2018. Soil resources and element stocks in drylands to face global issues. Scientific Reports 8 (1):13788. doi:10.1038/s41598-018-32229-0.
  • Quiroga, A. R., D. E. Buschiazzo, and N. Peinemann. 1999. Soil compaction is related to management practices in the semi-arid Argentine pampas. Soil & Tillage Research 52 (1–2):21–8. doi:10.1016/S0167-1987(99)00049-5.
  • Quiroga, A., D. Funaro, E. Noellemeyer, and N. Peinemann. 2006. Barley yield response to soil organic matter and texture in the pampas of Argentina. Soil & Tillage Research 90 (1–2):63–8. doi:10.1016/j.still.2005.08.019.
  • Riestra, D., E. Noellemeyer, and A. Quiroga. 2012. Soil texture and forest species condition the effect of afforestation on soil quality parameters. Soil Science 177:279–87. doi:10.1097/SS.0b013e318245d0fe.
  • Sakschewski, B., W. von Bloh, V. Huber, C. Muller, and A. Bondeau. 2014. Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems? Ecological Modelling 288:103–11. doi:10.1016/j.ecolmodel.2014.05.019.
  • Schlichting, E., H. P. Blume, and K. Stahr. 1995. Bodenkundliches Praktikum. 2nd ed. Hamburg-Berlín: Paul Parey Berlag.
  • Six, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implications fo C-saturation of soils. Plant and Soil 241 (2):155–76. doi:10.1023/A:1016125726789.
  • Skjemstad, J. and J. A. Baldock. 2007. Total and organic carbon. In Soil science and methods of analysis, ed. M. E. Carter and E. G. Gregorich, 225–38. second ed. Boca Raton: Soil Science Society of Canada.
  • Stevenson, F. J. 1986. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur. Micronutrients. New York: J. Wiley & Sons.
  • Sumner, M. E., and W. P. Miller. 1996. Cation exchange capacity and exchange coefficients. In: Methods of soil analysis. Part 3-chemical methods. Madison, WI: Soil Sci. Soc. Am.
  • Swift, R. S. 1996. Chapter 35: Organic matter characterization. In: Methods of soil analysis. Part 3. Chemical methods. 1018-1020. Madison WI: Soil Sci. Soc. Am.
  • Traversa, A., V. D’Orazio, G. M. Mezzapesa, E. Bonifacio, K. Farrag, N. Senesi, and G. Brunetti. 2014. Chemical and spectroscopic characteristics of humic acids and dissolved organic matter along two alfisol profiles. Chemosphere 111:184–94. doi:10.1016/j.chemosphere.2014.03.063.
  • Vázquez, C., A. G. Iriarte, C. Merlo, A. Abril, E. Kowaljow, and J. M. Meriles. 2016. Land use impact on chemical and spectroscopical characteristics of soil organic matter in an arid ecosystem. Environmental Earth Sciences 75 (10):883–95. doi:10.1007/s12665-016-5655-9.
  • Vázquez Polo, J. R., F. M. Vázquez, and J. C. Menjivar Flores. 2014. Formas de hierro y aluminio en suelos con diferentes usos en la zona norte del departamento del Magdalena, Colombia. Acta Agronómica 63 (4):1–9. doi:10.15446/acag.v63n4.42038.
  • Vogel, C., K. Heister, F. Buegger, I. Tanubuidjaja, S. Haug, M. Schloter, and I. Kogel-Knabner. 2015. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biology and Fertility of Soils 51 (4):427–42. doi:10.1007/s00374-014-0987-7.
  • Zach, A., H. Tiessen, and E. Noellemeyer. 2006. Carbonturnover and carbon-13 natural abundance under land use change in semiarid savanna soils of La Pampa, Argentina. Soil Science Society of America Journal 70 (5):1541–46. doi:10.2136/sssaj2005.0119.
  • Zalba, P., N. M. Amiotti, J. A. Galantini, and S. Pistola. 2016. Soil humic and fulvic acid from different land use systems evaluated by E4/E6 ratios. Communications in Soil Science and Plant Analysis 47 (13–14):1675–79. doi:10.1080/00103624.2016.1206558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.