Publication Cover
The Engineering Economist
A Journal Devoted to the Problems of Capital Investment
Volume 69, 2024 - Issue 1
51
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fuzzy activity-based costing: An investment evaluation approach for management information system of a smart factory

ORCID Icon &

References

  • Aborujilah, A., Elsebaie, A.-E. F. M., & Mokhtar, S. A. (2021). IoT MEMS: IoT-based paradigm for medical equipment management systems of ICUs in light of COVID-19 outbreak. IEEE Access: Practical Innovations, Open Solutions, 9, 131120–131133. https://doi.org/10.1109/ACCESS.2021.3069255
  • Akbarzadeh, P., & Hematfar, M. (2016). Implementation of fuzzy activity-based costing (FABC) model in Ordibehesht hospital of Shiraz. International Business Management, 10(8), 1434–1438. https://doi.org/10.3923/ibm.2016.1434.1438
  • Alami, D., & ElMaraghy, W. (2020). Traditional and activity based aggregate job costing model. Procedia CIRP, 93, 610–615. https://doi.org/10.1016/j.procir.2020.04.148
  • Avison, D. E., & Fitzgerald, G. (2003). Where now for development methodologies? Communications of the ACM, 46(1), 78–82. https://doi.org/10.1145/602421.602423
  • Baykasoğlu, A., Subulan, K., Güçdemir, H., Dudaklı, N., & Eren Akyol, D. (2020). Revenue management for make-to-order manufacturing systems with a real-life application. The Engineering Economist, 65(1), 27–65. https://doi.org/10.1080/0013791X.2019.1571145
  • Bhargava, P., & Mahto, M. (2020). From one to many: Scaling the smart factory to a smart network. Deloitte Insights. https://www2.deloitte.com/cn/en/pages/energy-and-resources/articles/from-one-to-many.html
  • Burke, R., Mussomeli, A., Laaper, S., Hartigan, M., & Sniderman, B. (2017). The smart factory: Responsive, adaptive, connected manufacturing. Deloitte University Press. https://www2.deloitte.com/content/dam/insights/us/articles/4051_The-smart-factory/DUP_The-smart-factory.pdf
  • Chakraverty, S., Sahoo, D. M., & Mahato, N. R. (2019). Fuzzy numbers. In S. Chakraverty, D. M. Sahoo, & N. R. Mahato (Eds.), Concepts of soft computing: Fuzzy and ANN with programming (pp. 53–69). Springer Singapore. https://doi.org/10.1007/978-981-13-7430-2_3
  • Chansaad, A. P., Rattanamanee, W., & Chaiprapat, S. (2012). A fuzzy time-driven activity-based costing model in an uncertain manufacturing environment. Proceedings of the Asia Pacific Industrial Engineering and Management Systems Conference 2012, Phuket, Thailand, 1949–1959.
  • Chekired, D. A., Khoukhi, L., & Mouftah, H. T. (2018). Industrial IoT data scheduling based on hierarchical fog computing: A key for enabling smart factory. IEEE Transactions on Industrial Informatics, 14(10), 4590–4602. https://doi.org/10.1109/TII.2018.2843802
  • Chen, Y., Tian, L., Yang, L., & Zhang, L. (2022). Design of safety and integrated disaster prevention system based on big data technology. Journal of Physics: Conference Series, 2146(1), 012036. https://doi.org/10.1088/1742-6596/2146/1/012036
  • Cheng, C.-H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142(1), 174–186. https://doi.org/10.1016/S0377-2217(01)00280-6
  • Chu, H. C., & Hwang, G.-J. (2008). A Delphi-based approach to developing expert systems with the cooperation of multiple experts. Expert Systems with Applications, 34(4), 2826–2840. https://doi.org/10.1016/j.eswa.2007.05.034
  • Cook, T. J., Grove, H. D., & Coburn, S. (2000). ABC process-based capital budgeting. Journal of Managerial Issues, 12(3), 305–323.
  • Cooper, R., & Kaplan, R. S. (1988). How cost accounting distorts product costs. Management Accounting, 69(10), 20–27.
  • Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458–467. https://doi.org/10.1287/mnsc.9.3.458
  • Duran, O., & Afonso, P. S. L. P. (2020). An activity based costing decision model for life cycle economic assessment in spare parts logistic management. International Journal of Production Economics, 222, 107499. https://doi.org/10.1016/j.ijpe.2019.09.020
  • Erdoğan, M., & Kaya, İ. (2020). A systematic approach to evaluate risks and failures of public transport systems with a real case study for bus rapid system in Istanbul. Sustainable Cities and Society, 53, 101951. https://doi.org/10.1016/j.scs.2019.101951
  • Esmalifalak, H., Albin, M. S., & Behzadpoor, M. (2015). A comparative study on the activity based costing systems: Traditional, fuzzy and Monte Carlo approaches. Health Policy and Technology, 4(1), 58–67. https://doi.org/10.1016/j.hlpt.2014.10.010
  • Grime, M. M., & Wright, G. (2016). Delphi method (P. Brandimarte, B. Everitt, G. Molenberghs, W. Piegorsch, & F. Ruggeri, Eds.; pp. 1–6). John Wiley & Sons Inc.
  • Hazen, G., & Magni, C. (2021). Average internal rate of return for risky projects. The Engineering Economist, 66(2), 90–120. https://doi.org/10.1080/0013791X.2021.1894284
  • Imeni, M. (2020). Fuzzy logic in accounting and auditing. Journal of Fuzzy Extension and Applications, 1(1), 66–72.
  • Jones, H., & Twiss, B. C. (1978). Forecasting technology for planning decisions. Macmillan.
  • Kahraman, C., Ruan, D., & Tolga, E. (2002). Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. Information Sciences, 142(1–4), 57–76. https://doi.org/10.1016/S0020-0255(02)00157-3
  • Kaplan, R. S., Cooper, R., Maisel, L., Morrissey, E., & Oehm, R. (1992). Implementing activity-based cost management: Moving from analysis to action. Harvard Business Review.
  • Kim, Y., Shin, Y., & Cho, H. (2021). Influencing factors on thermal comfort and biosignals of occupant-a review. Journal of Mechanical Science and Technology, 35(9), 4201–4224. https://doi.org/10.1007/s12206-021-0832-5
  • Kuchta, D. (2000). Fuzzy capital budgeting. Fuzzy Sets and Systems, 111(3), 367–385. https://doi.org/10.1016/S0165-0114(98)00088-8
  • Lapper, S., Dollar, B., Cotteleer, M., & Sniderman, B. (2020). Implementing the smart factory: New perspectives for driving value. Deloitte Insights. https://www2.deloitte.com/us/en/insights/topics/digital-transformation/smart-factory-2-0-technology-initiatives.html
  • Lim, S. B., Malek, J. A., Yussoff, M. F. Y. M., & Yigitcanlar, T. (2021). Understanding and acceptance of smart city policies: Practitioners’ perspectives on the Malaysian smart city framework. Sustainability, 13(17), 9559. https://doi.org/10.3390/su13179559
  • Lin, T., Xiong, Y., & Su, W. (2008). Activity-based costing popularity in China. Cost Management, 22(3), 40–48.
  • Maravas, A., & Pantouvakis, J.-P. (2013). Guidelines for modelling time and cost uncertainty in project and programme management. Procedia - Social and Behavioral Sciences, 74, 203–211. https://doi.org/10.1016/j.sbspro.2013.03.045
  • Ming, S. C., C. A. P., Yun, L., Bo, X., & Yi, H. (2015). Measuring corruption in public construction projects in China. Journal of Professional Issues in Engineering Education and Practice, 141(4), 05015001–05015011.
  • Mortaji, S. T. H., Bagherpour, M., & Mazdeh, M. M. (2013). Fuzzy time-driven activity-based costing. Engineering Management Journal, 25(3), 63–73. https://doi.org/10.1080/10429247.2013.11431983
  • Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Model for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271–285. https://doi.org/10.1016/j.ijpe.2005.09.001
  • Mulubrhan, F., Mokhtar, A. A. B., & Muhammad, M. (2016). Fuzzy activity based life cycle costing For repairable equipment. MATEC Web of Conferences, 74, 00007. https://doi.org/10.1051/matecconf/20167400007
  • Mwaikambo, E., Rajabifard, A., & Hagai, M. (2015). Modelling cost estimation for accessing spatial data using fuzzy logic and time-driven activity-based costing in the context of an NSDI. Journal of Spatial Science, 60(1), 137–151. https://doi.org/10.1080/14498596.2014.915768
  • Nachtmann, H., & Needy, K. L. (2001). Fuzzy activity based costing: A methodology for handling uncertainty in activity based costing systems. The Engineering Economist, 46(4), 245–273. https://doi.org/10.1080/00137910108967577
  • Nachtmann, H., & Needy, K. L. (2003). Methods for handling uncertainty in activity-based costing systems. The Engineering Economist, 48(3), 259–282. https://doi.org/10.1080/00137910308965065
  • Nota, G., Matonti, G., Bisogno, M., & Nastasia, S. (2020). The contribution of cyber-physical production systems to activity-based costing in manufacturing. An interventionist research approach. International Journal of Engineering Business Management, 12, 184797902096230. https://doi.org/10.1177/1847979020962301
  • Ostadi, B., Mokhtarian Daloie, R., & Sepehri, M. M. (2019). A combined modelling of fuzzy logic and time-driven activity-based costing (TDABC) for hospital services costing under uncertainty. Journal of Biomedical Informatics, 89, 11–28. https://doi.org/10.1016/j.jbi.2018.11.011
  • Pfeifer, M. R. (2021). Development of a smart manufacturing execution system architecture for SMEs: A Czech case study. Sustainability, 13(18), 10181. https://doi.org/10.3390/su131810181
  • Quesado, P., & Silva, R. (2021). Activity-based costing (ABC) and its implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 41. https://doi.org/10.3390/joitmc7010041
  • Radziwon, A., Bilberg, A., Bogers, M., & Madsen, E. S. (2014). The smart factory: Exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 69, 1184–1190. https://doi.org/10.1016/j.proeng.2014.03.108
  • Ren, Z., Shi, J., & Imran, M. (2023). Data evolution governance for ontology-based digital twin product lifecycle management. IEEE Transactions on Industrial Informatics, 19(2), 1791–1802. https://doi.org/10.1109/TII.2022.3187715
  • Robertson, P. L., Casali, G. L., & Jacobson, D. (2012). Managing open incremental process innovation: Absorptive Capacity and distributed learning. Research Policy, 41(5), 822–832. https://doi.org/10.1016/j.respol.2012.02.008
  • Roztocki, N., & Weistroffer, H. R. (2005). Evaluating information technology investments: A fuzzy activity-based costing approach. Journal of Information Science and Technology, 2(4), 31–43.
  • Roztocki, N., & Weistroffer, H. R. (2007). A model for assessing information technology investment: Insights from events studies (pp. 1–27). SSRN.
  • Saran, C., Dubner, T., & Pricer, M. (2023). From traditional to smart industrials. KPMG. https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/from-traditional-to-smart-industrals.pdf
  • Sarokolaei, M. A., Bahreini, M., & Bezenjani, F. P. (2013). Fuzzy performance focused activity based costing (PFABC). Procedia - Social and Behavioral Sciences, 75, 346–352. https://doi.org/10.1016/j.sbspro.2013.04.039
  • Secerov, I., Dolinaj, D., Pavic, D., Milosevic, D., Savic, S., Popov, S., Zivanov, Z., & Šećerov, I. (2019). Environmental monitoring systems: Review and future development. Wireless Engineering and Technology, 10(01), 1–18. https://doi.org/10.4236/wet.2019.101001
  • Sjödin, D., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart factory implementation and process innovation: A preliminary maturity model for leveraging digitalization in manufacturing. Research-Technology Management, 61(5), 22–31. https://doi.org/10.1080/08956308.2018.1471277
  • Tambare, P., Meshram, C., Lee, C.-C., Ramteke, R. J., & Imoize, A. L. (2022). Performance measurement system and quality management in data-driven industry 4.0: A review. Sensors (Basel, Switzerland), 22(1), 1–25. https://doi.org/10.3390/s22010224
  • Tang, C.-W., & Wu, C.-T. (2010). Obtaining a picture of undergraduate education quality: A voice from inside the university. Higher Education, 60(3), 269–286. https://doi.org/10.1007/s10734-009-9299-5
  • Tongsuksai, S., Mathrani, S., & Weerasinghe, K. (2023). Influential characteristics and benefits of cloud ERP adoption in New Zealand SMEs: A vendors’ perspective. IEEE Access. 11, 23956–23979. https://doi.org/10.1109/ACCESS.2023.3254500
  • Tran, U., & Tran, H. (2022). Factors of application of activity-based costing method: Evidence from a transitional country. Asia Pacific Management Review, 27, 303–311.
  • Tsai, W. H., & Lu, Y. H. (2018). A framework of production planning and control with carbon tax under Industry 4.0. Sustainability, 10(9), 3221. https://doi.org/10.3390/su10093221
  • Tsai, W. H., Yang, C. H., Huang, C. T., & Wu, Y. Y. (2017). The impact of the carbon tax policy on green building strategy. Journal of Environmental Planning and Management, 60(8), 1412–1438. https://doi.org/10.1080/09640568.2016.1221800
  • Ullah, M., Narayanan, A., Wolff, A., & Nardelli, P. H. J. (2022). Industrial energy management system: Design of a conceptual framework using IoT and big data. IEEE Access. 10, 110557–110567. https://doi.org/10.1109/ACCESS.2022.3215167
  • Wang, K., Chen, C.-M., Tie, Z., Shojafar, M., Kumar, S., & Kumari, S. (2022). Forward privacy preservation in IoT-enabled healthcare systems. IEEE Transactions on Industrial Informatics, 18(3), 1991–1999. https://doi.org/10.1109/TII.2021.3064691
  • Wang, K. J., Basuki, S. S. A., & Kurniati, N. (2023). A life-cycle asset management model by response surface method based optimization. International Journal of Production Economics, 263, 108957. https://doi.org/10.1016/j.ijpe.2023.108957
  • Wang, M. J., & Liang, G.-S. (1995). Benefit/cost analysis using fuzzy concept. The Engineering Economist, 40(4), 359–376. https://doi.org/10.1080/00137919508903160
  • Wang, Y., Xu, L., & Solangi, Y. A. (2020). Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustainable Cities and Society, 52, 101861. https://doi.org/10.1016/j.scs.2019.101861
  • Won, J. Y., & Park, M. J. (2020). Smart factory adoption in small and medium-sized enterprises: Empirical evidence of manufacturing industry in Korea. Technological Forecasting and Social Change, 157, 120117. https://doi.org/10.1016/j.techfore.2020.120117
  • Xu, L., Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
  • Yang, C. H., Lee, K. C., & Chen, H. C. (2016). Incorporating carbon footprint with activity-based costing constraints into sustainable public transport infrastructure project decisions. Journal of Cleaner Production, 133, 1154–1166. https://doi.org/10.1016/j.jclepro.2016.06.014
  • Yang, C. H., Lee, K. C., & Li, S. E. (2020). A mixed activity-based costing and resource constraint optimal decision model for IoT-oriented intelligent building management system portfolios. Sustainable Cities and Society, 60, 102142. https://doi.org/10.1016/j.scs.2020.102142
  • Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems (Vol. 6, pp. 394–432). World Scientific.
  • Zhang, X., & Ming, X. (2021). An implementation for smart manufacturing information system (SMIS) from an industrial practice survey. Computers & Industrial Engineering, 151, 106938. https://doi.org/10.1016/j.cie.2020.106938
  • Zimmermann, H.-J. (2010). Fuzzy set theory. WIREs Computational Statistics, 2(3), 317–332. https://doi.org/10.1002/wics.82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.