84
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Receding optimal synthesis of robust consensus for multi-agent systems with limited communication

&
Pages 1493-1509 | Received 15 Jul 2023, Accepted 06 Dec 2023, Published online: 19 Mar 2024

References

  • Ai, X., Song, S., & You, K. (2016). Second-order consensus of multi-agent systems under limited interaction ranges. Automatica, 68, 329–333. https://doi.org/10.1016/j.automatica.2016.01.073
  • Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
  • Chen, H., Zong, G., Gao, F., & Shi, Y. (2023). Probabilistic event-triggered policy for extended dissipative finite-time control of MJSs under cyber-attacks and actuator failures. IEEE Transactions on Automatic Control, 68(12), 7803–7810. https://doi.org/10.1109/TAC.2023.3246429
  • Chen, H., Zong, G., Zhao, X., Gao, F., & Shi, K. (2023). Secure filter design of fuzzy switched CPSs with mismatched modes and application: A multi-domain event-triggered strategy. IEEE Transactions on Industrial Informatics, 19(10), 10034–10044. https://doi.org/10.1109/TII.2022.3232768
  • Cheng, Z., Zhang, H.-T., Fan, M.-C., & Chen, G. (2015). Distributed consensus of multi-agent systems with input constraints: A model predictive control approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(3), 825–834. https://doi.org/10.1109/TCSI.2014.2367575
  • De Persis, C., Weitenberg, E. R. A., & Dörfler, F. (2018). A power consensus algorithm for dc microgrids. Automatica, 89, 364–375. https://doi.org/10.1016/j.automatica.2017.12.026
  • Dong, Y., & Huang, J. (2014). Leader-following connectivity preservation rendezvous of multiple double integrator systems based on position measurement only. IEEE Transactions on Automatic Control, 59(9), 2598–2603. https://doi.org/10.1109/TAC.2014.2310051
  • Dong, Y., & Huang, J. (2016). The leader-following rendezvous with connectivity preservation via a self-tuning adaptive distributed observer. International Journal of Control, 90(7), 1518–1527. https://doi.org/10.1080/00207179.2016.1210823
  • Dong, Y., Su, Y., Liu, Y., & Xu, S. (2018). An internal model approach for multi-agent rendezvous and connectivity preservation with nonlinear dynamics. Automatica, 89, 300–307. https://doi.org/10.1016/j.automatica.2017.12.018
  • Dong, Y., & Xu, S. (2020). A novel connectivity-preserving control design for rendezvous problem of networked uncertain nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5127–5137. https://doi.org/10.1109/TNNLS.5962385
  • Hai-Tao, Z., Chen, M. Z. Q., & Stan, G.-B. (2011). Fast consensus via predictive pinning control. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9), 2247–2258. https://doi.org/10.1109/TCSI.2011.2123450
  • Herceg, M., Kvasnica, M., Jones, C., & Morari, M. (2013) Multi-parametric toolbox 3.0. In Proceedings of the European Control Conference (pp. 502–510).
  • Hong, H., Yu, W., Fu, J., & Yu, X. (2019). Finite-time connectivity-preserving consensus for second-order nonlinear multiagent systems. IEEE Transactions on Control of Network Systems, 6(1), 236–248. https://doi.org/10.1109/TCNS.2018.2808599
  • Hu, F., Sun, S., & Ma, T. (2023). Connectivity-preserving rendezvous of heterogeneous multi-agent systems under denial-of-service attacks. Journal of the Franklin Institute, 360(4), 3189–3207. https://doi.org/10.1016/j.jfranklin.2023.01.015
  • Ji, M., & Egerstedt, M. (2007). Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics, 23(4), 693–703. https://doi.org/10.1109/TRO.2007.900638
  • Khalil, H. K. (1996). Nonlinear systems. Prentice Hall.
  • Li, H., & Li, X. (2020). Distributed model predictive consensus of heterogeneous time-varying multi-agent systems: With and without self-triggered mechanism. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(12), 5358–5368. https://doi.org/10.1109/TCSI.8919
  • Li, H., & Li, X. (2023). Finite-time predictive consensus for discrete-time heterogeneous multi-agent systems over switching digraphs. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(6), 2136–2140.
  • Li, H., & Shi, Y. (2014). Robust distributed model predictive control of constrained continuous-time nonlinear systems: A robustness constraint approach. IEEE Transactions on Automatic Control, 59(6), 1673–1678. https://doi.org/10.1109/TAC.9
  • Li, H., & Yan, W. (2015). Receding horizon control based consensus scheme in general linear multi-agent systems. Automatica, 56, 12–18. https://doi.org/10.1016/j.automatica.2015.03.023
  • Li, H., Zhan, J., Zhang, H.-T., & Li, X. (2023). Distributed model predictive consensus of constrained heterogeneous multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(7), 4155–4164. https://doi.org/10.1109/TSMC.2023.3241195
  • Li, Q., Wei, J., Yuan, J., Gou, Q., & Niu, Z. (2021). Distributed event-triggered adaptive finite-time consensus control for second-order multi-agent systems with connectivity preservation. Journal of the Franklin Institute, 358(12), 6013–6034. https://doi.org/10.1016/j.jfranklin.2021.05.028
  • Limon, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2010). Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. Journal of Process Control, 20(3), 248–260. https://doi.org/10.1016/j.jprocont.2009.11.007
  • Löfberg, J. (2004) Yalmip: A toolbox for modeling and optimization in matlab. In Proceedings of the CACSD Conference.
  • Lu, M. (2018). Rendezvous with connectivity preservation of mobile agents subject to uniform time-delays. Automatica, 88, 31–37. https://doi.org/10.1016/j.automatica.2017.11.003
  • Ma, H., Wang, D., & Liu, D. (2018). Connectivity preservation of second-order nonlinear multiagent systems with hybrid event-driven and time-driven control. International Journal of Systems Science, 49(7), 1368–1382. https://doi.org/10.1080/00207721.2018.1453953
  • Mayne, D. Q., Seron, M. M., & Raković, S. V. (2005). Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, 41(2), 219–224. https://doi.org/10.1016/j.automatica.2004.08.019
  • Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., & Mayne, D. Q. (2005). Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control, 50(3), 406–410. https://doi.org/10.1109/TAC.2005.843854
  • Su, H., Wang, X., & Chen, G. (2010). Rendezvous of multiple mobile agents with preserved network connectivity. Systems & Control Letters, 59(5), 313–322. https://doi.org/10.1016/j.sysconle.2010.03.006
  • Su, Y. (2015). Leader-following rendezvous with connectivity preservation and disturbance rejection via internal model approach. Automatica, 57, 203–212. https://doi.org/10.1016/j.automatica.2015.04.015
  • Tran, N.-T., Xiao, J.-W., Wang, Y.-W., & Yang, W. (2017). Distributed optimisation problem with communication delay and external disturbance. International Journal of Systems Science, 48(16), 3530–3541. https://doi.org/10.1080/00207721.2017.1382605
  • Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y
  • Wang, C., Liu, C., & Liu, S. (2020). Robust fixed-time connectivity-preserving consensus for second-order multi-agent systems with external disturbances. IET Control Theory & Applications, 14(17), 2674–2681. https://doi.org/10.1049/cth2.v14.17
  • Wang, X., Zerr, B., Thomas, H., Clement, B., & Xie, Z. (2020). Pattern formation of multi-AUV systems with the optical sensor based on displacement-based formation control. International Journal of Systems Science, 51(2), 348–367. https://doi.org/10.1080/00207721.2020.1716096
  • Wang, Y., & Manzie, C. (2022). Robust distributed model predictive control of linear systems: Analysis and synthesis. Automatica, 137, 110141. https://doi.org/10.1016/j.automatica.2021.110141
  • Yoo, S. J. (2018). Connectivity-preserving consensus tracking of uncertain nonlinear strict-feedback multiagent systems: An error transformation approach. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 4542–4548. https://doi.org/10.1109/TNNLS.5962385
  • Zhan, J., Jiang, Z.-P., Wang, Y., & Li, X. (2019). Distributed model predictive consensus with self-triggered mechanism in general linear multiagent systems. IEEE Transactions on Industrial Informatics, 15(7), 3987–3997. https://doi.org/10.1109/TII.9424
  • Zhan, J., & Li, X. (2013). Consensus of sampled-data multi-agent networking systems via model predictive control. Automatica, 49(8), 2502–2507. https://doi.org/10.1016/j.automatica.2013.04.037
  • Zhang, F. (2005). The Schur complement and its applications. Springer.
  • Zhou, L., & Li, S. (2015). Distributed model predictive control for consensus of sampled-data multi-agent systems with double-integrator dynamics. IET Control Theory & Applications, 9(12), 1774–1780. https://doi.org/10.1049/cth2.v9.12
  • Zong, G., Yang, D., Lam, J., & Song, X. (2022). Fault-tolerant control of switched LPV systems: A bumpless transfer approach. IEEE/ASME Transactions on Mechatronics, 27(3), 1436–1446. https://doi.org/10.1109/TMECH.2021.3096375

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.