268
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimal design of I-PD controller for disturbance rejection of time delayed unstable and integrating-unstable processes

ORCID Icon & ORCID Icon
Pages 1610-1638 | Received 28 Aug 2023, Accepted 28 Jan 2024, Published online: 17 Feb 2024

References

  • Ablay, G. (2015). Variable structure controllers for unstable processes. Journal of Process Control, 32, 10–15. https://doi.org/10.1016/j.jprocont.2015.04.017
  • Ajmeri, M. (2023). Analytical design of enhanced PID controller with set-point filter for unstable processes with time delay. International Journal of Dynamics and Control, 11(2), 564–573. https://doi.org/10.1007/s40435-022-00987-5
  • Alagoz, B. B., Deniz, F. N., Keles, C., & Tan, N. (2015). Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio. ISA Transactions, 55, 63–71. https://doi.org/10.1016/j.isatra.2014.09.013
  • Ali, A., & Majhi, S. (2010). PID controller tuning for integrating processes. ISA Transactions, 49(1), 70–78. https://doi.org/10.1016/j.isatra.2009.09.001
  • Almodaresi, E., & Bozorg, M. (2017). Kp-stable regions in the space of PID controller coefficients. IET Control Theory & Applications, 11(10), 1642–1647. https://doi.org/10.1049/iet-cta.2016.0685
  • Alyoussef, F., & Kaya, I. (2022). Tuning proportional-integral controllers based on new analytical methods for finding centroid of stability locus for stable/unstable first-order plus dead-time processes. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, https://doi.org/10.1177/09596518211048028
  • Alyoussef, F., & Kaya, I. (2023). Simple PI-PD tuning rules based on the centroid of the stability region for controlling unstable and integrating processes. ISA Transactions, 134, 238–255. https://doi.org/10.1016/j.isatra.2022.08.007
  • Arrieta, O., Vilanova, R., & Visioli, A. (2011). Proportional-integral-derivative tuning for servo/regulation control operation for unstable and integrating processes. Industrial & Engineering Chemistry Research, 50(6), 3327–3334. https://doi.org/10.1021/ie101012z
  • Åström, K. J. (1970). Introduction to stochastic control theory. Academic Press.
  • Åström, K. J., & Hägglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), 1163–1175. https://doi.org/10.1016/S0967-0661(01)00062-4
  • Babu, D. C., Kumar, D. B. S., & Sree, R. P. (2017). Tuning of PID controllers for unstable systems using direct synthesis method. Indian Chemical Engineer, 59(3), 215–241. https://doi.org/10.1080/00194506.2016.1255570
  • Begum, K.G., Rao, A.S. and Radhakrishnan, T.K. (2017). Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays. ISA Transactions, 68, 223–234. https://doi.org/10.1016/j.isatra.2017.03.005
  • Bingul, Z., & Karahan, O. (2018). A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355(13), 5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056
  • Celentano, L. (2023). A fast design technique for robust industrial controllers. Journal of the Franklin Institute, 360(8), 5689–5727. https://doi.org/10.1016/j.jfranklin.2023.03.033
  • Chakraborty, S., Ghosh, S., & Naskar, A. K. (2017). I–PD controller for integrating plus time-delay processes. IET Control Theory & Applications, 11(17), 3137–3145. https://doi.org/10.1049/iet-cta.2017.0112
  • Cho, W., Lee, J., & Edgar, T. F. (2014). Simple analytic proportional-integral-derivative (PID) controller tuning rules for unstable processes. Industrial & Engineering Chemistry Research, 53(13), 5048–5054. https://doi.org/10.1021/ie401018g
  • Chu, M., Xu, C., & Chu, J. (2019). Graphic IMC-PID tuning based on maximum sensitivity for uncertain systems. Transactions of the Institute of Measurement and Control, 41(8), 2196–2204. https://doi.org/10.1177/0142331218775491
  • Cokmez, E., Atic, S., Peker, F., & Kaya, I. (2018). Fractional-order PI controller design for integrating processes based on gain and phase margin specifications. IFAC-PapersOnLine, 51(4), 751–756. https://doi.org/10.1016/j.ifacol.2018.06.206
  • Cokmez, E., & Kaya, I. (2018). Stability boundary locus for unstable processes with time delay under fractional-order PI controllers. 2018 6th International Conference on Control Engineering and Information Technology, CEIT 2018, October (pp. 1–6).
  • Cokmez, E., & Kaya, I. (2023). An analytical solution of fractional order PI controller design for stable/unstable/integrating processes with time delay. Turkish Journal of Electrical Engineering and Computer Sciences, 31(3), 626–645. https://doi.org/10.55730/1300-0632.4006
  • Daraz, A., Malik, S. A., Haq, I. U., Khan, B. K., Laghari, G. F., & Zafar, F. (2020). Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm. PLoS One, 15(11), https://doi.org/10.1371/journal.pone.0242428
  • Dincel, E., & Söylemez, M. T. (2018). Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach. ISA Transactions, 79, 189–201. https://doi.org/10.1016/j.isatra.2018.04.009
  • Dogruer, T. (2023). Design of I-PD controller based modified smith predictor for processes with inverse response and time delay using equilibrium optimizer. IEEE Access, 11(January), 14636–14646. https://doi.org/10.1109/ACCESS.2023.3244328
  • Fang, H., Yuan, X., & Liu, P. (2018). Active–disturbance–rejection–control and fractional–order–proportional–integral–derivative hybrid control for hydroturbine speed governor system. Measurement and Control, 51(5-6), 192–201. https://doi.org/10.1177/0020294018778312
  • Kaya, I. (2018). Controller design for integrating processes with inverse response and dead time based on standard forms. Electrical Engineering, 100(3), 2011–2022. https://doi.org/10.1007/s00202-018-0679-7
  • Kaya, I. (2020). Integral-proportional derivative tuning for optimal closed loop responses to control integrating processes with inverse response. Transactions of the Institute of Measurement and Control, 42(16), 3123–3134. https://doi.org/10.1177/0142331220941657
  • Kaya, I., & Cokmez, E. (2023). Integral-proportional derivative controller tuning rules obtained from optimum responses for set-point tracking of unstable processes with time delay. Transactions of the Institute of Measurement and Control, 45(7), 1351–1366. https://doi.org/10.1177/01423312221137473
  • Kumar, D., Aryan, P., & Raja, G. L. (2022). Design of a novel fractional-order internal model controller-based Smith predictor for integrating processes with large dead-time. Asia-Pacific Journal of Chemical Engineering, 17(1), 1–13. https://doi.org/10.1002/apj.2724
  • Kumar, D. B. S., & Sree, R. P. (2016). Tuning of IMC based PID controllers for integrating systems with time delay. ISA Transactions, 63, 242–255. https://doi.org/10.1016/j.isatra.2016.03.020
  • Kumar, M., Prasad, D., & Singh, R. S. (2020). Performance enhancement of IMC-PID controller design for stable and unstable second-order time delay processes. Journal of Central South University, 27(1), 88–100. https://doi.org/10.1007/s11771-020-4280-7
  • Latha, K., Rajinikanth, V., & Surekha, P. M. (2013). PSO-based PID controller design for a class of stable and unstable systems. ISRN Artificial Intelligence, 2013, 1–11. https://doi.org/10.1155/2013/543607
  • Matusu, R., Senol, B., & Pekar, L. (2020). Robust PI control of interval plants with gain and phase margin specifications: Application to a continuous stirred tank reactor. IEEE Access, 8, 145372–145380. https://doi.org/10.1109/ACCESS.2020.3014684
  • Medarametla, P. K., & Muthukumarasamy, M. (2018). A novel PID controller with second order lead/lag filter for stable and unstable first order process with time delay. Chemical Product and Process Modeling, 13(1), 1–15. https://doi.org/10.1515/cppm-2017-0010
  • Nema, S., & Kumar Padhy, P. (2015). Identification and cuckoo PI-PD controller design for stable and unstable processes. Transactions of the Institute of Measurement and Control, 37(6), 708–720. https://doi.org/10.1177/0142331214546351
  • Nie, Z. Y., Li, Z., Wang, Q. G., Gao, Z., & Luo, J. (2022). A unifying Ziegler–Nichols tuning method based on active disturbance rejection. International Journal of Robust and Nonlinear Control, 32(18), 9525–9541. https://doi.org/10.1002/rnc.5848
  • Ohta, T., Tanaka, H., Tanaka, K., Sannomiya, N., & Nishikawa, Y. (1979). A new optimization method of pid control parameters for automatic tuning by process computer. Proceedings of the IFAC Symposium, 12(7), 133–138. https://doi.org/10.1016/s1474-6670(17)65587-3
  • Onat, C. (2019). A new design method for PI–PD control of unstable processes with dead time. ISA Transactions, 84, 69–81. https://doi.org/10.1016/j.isatra.2018.08.029
  • Ozyetkin, M. M., Onat, C., & Tan, N. (2019). PI-PD controller design for time delay systems via the weighted geometrical center method. Asian Journal of Control, 22(5), 1811–1826. https://doi.org/10.1002/asjc.2088
  • Padula, F., & Visioli, A. (2012). Optimal tuning rules for proportional-integer-derivative and fractional-order proportional-integer-derivative controllers for integral and unstable processes. IET Control Theory & Applications, 6(6), 776–786. https://doi.org/10.1049/iet-cta.2011.0419
  • Rahul, B. S., & Ajmeri, M. (2023). Enhanced design of PID controller and noise filter for second order stable and unstable processes with time delay. Chemical Product and Process Modeling, 18(3), 435–449. https://doi.org/10.1515/cppm-2022-0028
  • Rai, A., & Das, D. K. (2022). Ennoble class topper optimization algorithm based fuzzy PI-PD controller for micro-grid. Applied Intelligence, 52(6), 6623–6645. https://doi.org/10.1007/s10489-021-02704-9
  • Raja, G. L., & Ali, A. (2021). New PI-PD controller design strategy for industrial unstable and integrating processes with dead time and inverse response. Journal of Control, Automation and Electrical Systems, 32(2), 266–280. https://doi.org/10.1007/s40313-020-00679-5
  • Rajinikanth, V., & Latha, K. (2012). I-PD controller tuning for unstable system using bacterial foraging algorithm: A study based on various error criterion. Applied Computational Intelligence and Soft Computing, 2012, https://doi.org/10.1155/2012/329389
  • Ravikishore, C., Kumar, D. T. V. P., & Sree, R. P. (2020). Enhanced performance of PID controllers for unstable time delay systems using direct synthesis method. Indian Chemical Engineer, 63(3), 293–309. https://doi.org/10.1080/00194506.2020.1736650
  • Raza, A., & Anwar, N. (2019). Direct synthesis based PID controller design for time-delayed unstable processes in parallel control structure. Journal of Control, Automation and Electrical Systems, 30(6), 879–891. https://doi.org/10.1007/s40313-019-00513-7
  • Sain, D., Swain, S. K., & Mishra, S. K. (2018). Real time implementation of optimized I-PD controller for the magnetic levitation system using jaya algorithm. IFAC-PapersOnLine, 51(1), 106–111. https://doi.org/10.1016/j.ifacol.2018.05.018
  • Seer, Q. H., & Nandong, J. (2017). Stabilization and PID tuning algorithms for second-order unstable processes with time-delays. ISA Transactions, 67, 233–245. https://doi.org/10.1016/j.isatra.2017.01.017
  • Siddiqui, M. A. (2019). A model-free PI/PID controller based on direct synthesis approach to achieve disturbance rejection (pp. 207–212).
  • Siddiqui, M. A., Anwar, M. N., & Laskar, S. H. (2020). Enhanced control of unstable cascade systems using direct synthesis approach. Chemical Engineering Science, 232, 116322. https://doi.org/10.1016/j.ces.2020.116322
  • Vanavil, B., Anusha, A. V. N. L., Perumalsamy, M., & Rao, A. S. (2014). Enhanced IMC-PID controller design with lead-lag filter for unstable and integrating processes with time delay. Chemical Engineering Communications, 201(11), 1468–1496. https://doi.org/10.1080/00986445.2013.818983
  • Verma, B., & Padhy, P. K. (2018). Optimal PID controller design with adjustable maximum sensitivity. IET Control Theory and Applications, 12(8), 1156–1165. https://doi.org/10.1049/iet-cta.2017.1078
  • Vilanova, R., & Visioli, A. (2012). PID control in the third millennium (pp. 3–5). Springer. http://link.springer.com/10.1007/978-1-4471-2425-2
  • Visioli, A. (2001). Optimal tuning of PID controllers for integral and unstable processes. IEE Proceedings – Control Theory and Applications, 148(2), 180–184. https://doi.org/10.1049/ip-cta:20010197
  • Wang, Q., Lu, C., & Pan, W. (2016). IMC PID controller tuning for stable and unstable processes with time delay. Chemical Engineering Research and Design, 105, 120–129. https://doi.org/10.1016/j.cherd.2015.11.011
  • Wang, Y. J. (2014). Determination of all feasible robust PID controllers for open-loop unstable plus time delay processes with gain margin and phase margin specifications. ISA Transactions, 53(2), 628–646. https://doi.org/10.1016/j.isatra.2013.12.037
  • Yildirim, B. (2021). Advanced controller design based on gain and phase margin for microgrid containing PV/WTG/Fuel cell/Electrolyzer/BESS. International Journal of Hydrogen Energy, 46(30), 16481–16493. https://doi.org/10.1016/j.ijhydene.2020.08.185
  • Yin, H., Zhang, W., Yao, R., & Lin, S. (2018). IMC-PID load disturbance rejection controller with Set-point filter for the integrating and unstable processes with time delay. Chinese Control Conference, CCC, 2018-July (pp. 142–147).
  • Zhuang, M. (1992). Computer aided PID controller design. University of Sussex.
  • Zhuang, M., & Atherton, D. P. (1991). Tuning PID controllers with integral performance criteria. Control 1991. Control’91., International Conference On, 4, (pp. 481–486).
  • Zhuang, M., & Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEE Proceedings D Control Theory and Applications, 140(3), 216–224. https://doi.org/10.1049/ip-d.1993.0030
  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Journal of Dynamic Systems, Measurement, and Control, 115, 220–222. https://doi.org/10.1115/1.2899060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.