134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mode I fatigue threshold energy assessment of a polyurethane adhesive: effects of temperature and Paris law relation

, ORCID Icon, ORCID Icon, , &
Pages 509-533 | Received 12 Dec 2022, Accepted 27 Dec 2022, Published online: 18 Jun 2023

References

  • Zwicker, M. F. R.; Moghadam, M.; Zhang, W.; Nielsen, C. V. Automotive Battery Pack Manufacturing – a Review of Battery to Tab Joining. J. Adv. Joining Proc. 2020, 1, 100017. DOI: 10.1016/j.jajp.2020.100017.
  • Antelo, J.; Akhavan-Safar, A.; Carbas, R. J. C.; Marques, E. A. S.; Goyal, R.; da Silva, L. F. M. Replacing Welding with Adhesive Bonding: An Industrial Case Study. Int. J. Adhes. Adhes. 2022, 113, 103064. DOI: 10.1016/j.ijadhadh.2021.103064.
  • Passos, A. C.; Arouche, M. M.; Aguiar, R. A. A.; Costa, H. R. M.; de Barros, S.; Sampaio, E. M. Adhesion of Epoxy and Polyurethane Adhesives in Pultruded Composite Material. J. Adv. Joining Proc. 2021, 3, 100045. DOI: 10.1016/j.jajp.2021.100045.
  • Marques, D.; Ribeiro, M. L.; Tita, V. Comparative Study of Adhesive Fatigue in Aeronautical Bonded Joints: A Numerical Approach in the Frequency Domain. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236(7), 1400–1407. DOI: 10.1177/14644207211050022.
  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G. The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. J. Adhes. 2015, 91(5), 331–346. DOI: 10.1080/00218464.2014.903802.
  • Boutar, Y.; Naïmi, S.; Mezlini, S.; Carbas, R. J. C.; da Silva, L. F. M.; Ali, M. B. S. Cyclic Fatigue Testing: Assessment of Polyurethane Adhesive joints’ Durability for Bus structures’ Aluminium Assembly. J. Adv. Joining Proc. 2021, 3, 100053. DOI: 10.1016/j.jajp.2021.100053.
  • Adams, R. D.; Brearley, T.; Nehammer, E.; Rouse, E.; Vaughan, D. Frictional Damping in Hollow Beam Structures Joined by Bolts, Rivets, and Adhesive. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235(6), 1477–1487. DOI: 10.1177/1464420721994305.
  • Tan, W.; Na, J.; Wang, G.; Chen, H.; Meng, H. Effect of Temperature on the Fatigue Performance and Failure Mechanism of a Flexible Adhesive Butt Joint. Int. J. Adhes. Adhes. 2021, 107, 102819. DOI: 10.1016/j.ijadhadh.2021.102819.
  • Castro Sousa, F.; Akhavan-Safar, A.; Rakesh, G.; da Silva, L. F. M. Fatigue Life Estimation of Adhesive Joints at Different Mode Mixities. J. Adhes. 2022, 98(1), 1–23. DOI: 10.1080/00218464.2020.1804376.
  • Jablonski, D. A. Fatigue Crack Growth in Structural Adhesives. J. Adhes. 1980, 11(2), 125–143. DOI: 10.1080/00218468008078911.
  • Xu, X. X.; Crocombe, A. D.; Smith, P. A. Fatigue Crack Growth Rates in Adhesive Joints Tested at Different Frequencies. J. Adhes. 1996, 58(3–4), 191–204. DOI: 10.1080/00218469608015200.
  • Abou-Hamda, M. M.; Megahed, M. M.; Hammouda, M. M. I. Fatigue Crack Growth in Double Cantilever Beam Specimen with an Adhesive Layer. Eng. Fract. Mech. 1998, 60(5), 605–614. DOI: 10.1016/S0013-7944(98)00018-6.
  • Azari, S.; Jhin, G.; Papini, M.; Spelt, J. K. Fatigue Threshold and Crack Growth Rate of Adhesively Bonded Joints as a Function of Load/Displacement Ratio. Compos. Part A Appl. Sci. Manuf. 2014, 57, 59–66. DOI: 10.1016/j.compositesa.2013.11.001.
  • Azari, S.; Papini, M.; Spelt, J. K. Effect of Adhesive Thickness on Fatigue and Fracture of Toughened Epoxy Joints – Part I: Experiments. Eng. Fract. Mech. 2011, 78(1), 153–162. DOI: 10.1016/j.engfracmech.2010.06.025.
  • Sekiguchi, Y.; Sato, C. Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints. Materials. 2021, 14(7), 2021. DOI: 10.3390/ma14071723.
  • Ragni, M.; Castagnetti, D.; Spaggiari, A.; Dragoni, E.; Milelli, M.; Girlando, S.; Borghi, P. Thermomechanical Characterization of Metal-Polyurethane Bonded Joints: Effect of Manufacturing Parameters and Working Temperature. J. Adhes. 2021, 0(0), 1–21.
  • Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Effect of Test Temperature on the Shear and Fatigue Strengths of Epoxy Adhesive Joints. J. Adhes. 2021, 0(0), 1–19.
  • Dumont, V.; Stamoulis, G.; Badulescu, C.; Lefèvre, A.; Thévenet, D. Investigation of the Influence of the Temperature on the Fracture Properties of Adhesive Joints Using the Arcan Device. Eng. Fract. Mech. 2022, 269, 108524. DOI: 10.1016/j.engfracmech.2022.108524.
  • Usman, M.; Pascoe, J. A.; Alderliesten, R. C.; Benedictus, R. The Effect of Temperature on Fatigue Crack Growth in fm94 Epoxy Adhesive Bonds Investigated by Means of Energy Dissipation. Eng. Fract. Mech. 2018, 189, 98–109. DOI: 10.1016/j.engfracmech.2017.10.007.
  • Tan, W.; Na, J.; Wang, G.; Xu, Q.; Shen, H.; Mu, W. The Effects of Service Temperature on the Fatigue Behavior of a Polyurethane Adhesive Joint. Int. J. Adhes. Adhes. 2021, 107, 102819. DOI: 10.1016/j.ijadhadh.2021.102819.
  • Wen-Long, M.; Xu, Q.-H.; Na, J.-X.; Wang, H.; Tan, W.; Feng Li, D. Influence of Temperature and Humidity on the Fatigue Behaviour of Adhesively Bonded Cfrp/Aluminium Alloy Joints. J. Adhes. 2022, 98(10), 1358–1376. DOI: 10.1080/00218464.2021.1896362.
  • da Costa, J. A.; Akhavan-Safar, A.; Marques, E. A. S. RJC Carbas, and LFM da Silva. Effects of Cyclic Ageing on the Tensile Properties and Diffusion Coefficients of an Epoxy-Based Adhesive. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235(6), 1451–1460. DOI: 10.1177/1464420721994871.
  • Wei, T.; Jingxin, N.; Wenlong, M.; Guangbin, W.; Yao, F. Effects of Hygrothermal Aging on the Mechanical Properties of Aluminum Alloy Adhesive Joints for High-Speed Train Applications. J. Adhes. 2022, 98(3), 227–256. DOI: 10.1080/00218464.2020.1828878.
  • Moazzami, M.; Ayatollahi, M. R.; Akhavan-Safar, A.; Teixeira De Freitas, S.; Poulis, J. A.; da Silva, L. F. M. Effect of Cyclic Aging on Mode I Fracture Energy of Dissimilar Metal/Composite Dcb Adhesive Joints. Eng. Fract. Mech. 2022, 271, 108675. DOI: 10.1016/j.engfracmech.2022.108675.
  • da Costa, J. A.; Akhavan-Safar, A.; Marques, E. A. S.; Carbas, R. J. C.; da Silva, L. F. M. The Influence of Cyclic Ageing on the Fatigue Performance of Bonded Joints. Int. J. Fatigue. 2022, 161, 106939. DOI: 10.1016/j.ijfatigue.2022.106939.
  • Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Dependence of Fatigue Limit on Stress Ratio and Influence of Cyclic Stress on Shear Strength for an Adhesive Lap Joint. J. Adhes. 2021, 97(12), 1153–1165. DOI: 10.1080/00218464.2020.1738934.
  • da Silva, L. F.; Adams, R. D. Measurement of the Mechanical Properties of Structural Adhesives in Tension and Shear Over a Wide Range of Temperatures. J. Adhes. Sci. Technol. 2005, 19(2), 109–141. DOI: 10.1163/1568561053148449.
  • ASTM International. Standard test method for fracture strength in cleavage of adhesives in bonded metal joints. Standard ASTM D3433-99R20, ASTM International, West Conshohocken, Pensylvania, 2020.
  • Wirries, J.; Mayer, B.; Rütters, M. A Novel in situ Method to Determine Volume Shrinkage of Curing Adhesives. J. Adhes. 2022, 0(0), 1–26.
  • Naat, N.; Boutar, Y.; Naïmi, S.; Mezlini, S.; Filipe Martins Da Silva, L. Effect of Surface Texture on the Mechanical Performance of Bonded Joints: A Review. J. Adhes. 2021, 0(0), 1–93.
  • De Moura, M. F. S. F.; Campilho, R. D. S. G.; Gonçalves, J. P. M. Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints Under Pure Mode I Loading. Compos. Sci. Technol. 2008, 68(10–11), 2224–2230. DOI: 10.1016/j.compscitech.2008.04.003.
  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G. Effect of Temperature on Tensile Strength and Mode I Fracture Toughness of a High Temperature Epoxy Adhesive. J. Adhes. Sci. Technol. 2012, 26(7), 939–953. DOI: 10.1163/156856111X593649.
  • Banea, M. D.; da Silva, L. F. The Effect of Temperature on the Mechanical Properties of Adhesives for the Automotive Industry. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2010, 224(2), 51–62. DOI: 10.1243/14644207JMDA283.
  • Jia, Z.; Yuan, G.; Ma, H. L.; Hui, D.; Lau, K. T. Tensile Properties of a Polymer-Based Adhesive at Low Temperature with Different Strain Rates. Compos. B Eng. 2016, 87, 227–232. DOI: 10.1016/j.compositesb.2015.10.013.
  • Wang, A. S. D.; Slomiana, M.; Bucinell, R. B. Delamination Crack Growth in Composite Laminates. Delamination and debonding of materials. ASTM International: 1985.
  • Allegri, G.; Jones, M. I.; Wisnom, M. R.; Hallett, S. R. A New Semi-Empirical Model for Stress Ratio Effect on Mode Ii Fatigue Delamination Growth. Compos. Part A Appl. Sci. Manuf. 2011, 42(7), 733–740. DOI: 10.1016/j.compositesa.2011.02.013.
  • Rhys Jones, A. C.; Hu, W.; Kinloch, A. A Convenient Way to Represent Fatigue Crack Growth in Structural Adhesives. Fatigue Fract. Engng. Mater. Struct. 04 2015, 38(4), 379–391. DOI:10.1111/ffe.12241.
  • Hartman, A.; Schijve, J. The Effects of Environment and Load Frequency on the Crack Propagation Law for Macro Fatigue Crack Growth in Aluminium Alloys. Eng. Fract. Mech. 1970, 1(4), 615–631. DOI: 10.1016/0013-7944(70)90003-2.
  • Wilkins, D. J.; Eisenmann, J. R.; Camin, R. A.; Margolis, W. S.; Benson, R. A. Characterizing Delamination Growth in Graphite-Epoxy. Damage Compos. Mater, ASTM STP. 1982, 775, 168–183.
  • Castro Sousa, F.; Akhavan-Safar, A.; Goyal, R.; da Silva, L. F. The Influence of Mode Mixity and Adhesive System on the Fatigue Life of Adhesive Joints. Fatigue Fract. Eng. Mater. Struct. 2020, 43(10), 2337–2348. DOI: 10.1111/ffe.13301.
  • Monteiro, J.; Akhavan-Safar, A.; Carbas, R.; Marques, E.; Goyal, R.; El-Zein, M.; da Silva, L. F. Influence of Mode Mixity and Loading Conditions on the Fatigue Crack Growth Behaviour of an Epoxy Adhesive. Fatigue Fract. Eng. Mater. Struct. 2020, 43(2), 308–316. DOI: 10.1111/ffe.13125.
  • Castro Sousa, F.; Akhavan-Safar, A.; da Silva, L. F. M. Single and Periodic Overloading Effects on the Mode I Fatigue Crack Growth of a Ductile Adhesive. Theor. Appl. Fract. Mech. 2022, 121, 103528. DOI: 10.1016/j.tafmec.2022.103528.
  • Rocha, A. V. M.; Akhavan-Safar, A.; Carbas, R.; Marques, E. A. S.; Goyal, R.; El-Zein, M.; da Silva, L. F. M. Fatigue Crack Growth Analysis of Different Adhesive Systems: Effects of Mode Mixity and Load Level. Fatigue Fract. Eng. Mater. Struct. 2020, 43(2), 330–341. DOI: 10.1111/ffe.13145.
  • Hasegawa, K.; Crocombe, A. D.; Coppuck, F.; Jewel, D.; Maher, S. Characterising Bonded Joints with a Thick and Flexible Adhesive Layer–Part 1: Fracture Testing and Behaviour. Int. J. Adhes. Adhes. 2015, 63, 124–131. DOI: 10.1016/j.ijadhadh.2015.09.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.