103
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of LaSAT and bonding strength evaluation of epoxy adhesive over a wide range of loading rates

, , , , &
Pages 576-598 | Received 09 Jan 2023, Accepted 08 Jul 2023, Published online: 14 Jul 2023

References

  • Iwamoto, T.; Nagai, T.; Sawa, T. Experimental and Computational Investigations on Strain Rate Sensitivity and Deformation Behavior of Bulk Materials Made of Epoxy Resin Structural Adhesive. Int. J. Solids Struct. 2010, 47(2), 175–185. DOI: 10.1016/j.ijsolstr.2009.09.026.
  • Boyce, M. C.; Parks, D. M.; Argon, A. S. Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model. Mech. Mater. 1988, 7(1), 15–33. DOI: 10.1016/0167-6636(88)90003-8.
  • Argon, A. S. A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers. Philos. Mag. J. Theor. Exp. Appl. Phys. 1973, 28(4), 839–865. DOI: 10.1080/14786437308220987.
  • Cao, K.; Ma, X.; Zhang, B.; Wang, Y.; Wang, Y. Tensile Behavior of Polycarbonate Over a Wide Range of Strain Rates. Mater. Sci. Eng. A. 2010, 527(16–17), 4056–4061. DOI: 10.1016/j.msea.2010.03.088.
  • Ikeshima, D.; Yonezu, A.; Liu, L. Molecular Origins of Elastoplastic Behavior of Polycarbonate Under Tension: A Coarse-Grained Molecular Dynamics Approach. Comput. Mater. Sci. 2018, 145, 306–319. DOI: 10.1016/j.commatsci.2018.01.001.
  • Gilat, A.; Goldberg, R. K.; Roberts, G. D. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading. J. Aerosp. Eng. 2007, 20(2), 75–89. DOI: 10.1061/(ASCE)0893-1321(2007)20:2(75).
  • You, M.; Li, M.-B.; Yuan, Y.-L.; Lin, G.; Ma, F.-W.; Du, L.-F.; Tang, S.-J. Review of Experimental Techniques for Impact Property of Adhesive Bonds. Int. J. Adhes. Adhes. 2020, 100, 102620. DOI: 10.1016/j.ijadhadh.2020.102620.
  • Yokoyama, T.; Nakai, K. Determination of the Impact Tensile Strength of Structural Adhesive Butt Joints with a Modified Split Hopkinson Pressure Bar. Int. J. Adhes. Adhes. 2015, 56, 13–23. DOI: 10.1016/j.ijadhadh.2014.07.011.
  • Ravindran, S.; Sockalingam, S.; Kodagali, K.; Kidane, A.; Sutton, M. A.; Justusson, B.; Pang, J. Mode-I Behavior of Adhesively Bonded Composite Joints at High Loading Rates. Compos. Sci. Technol. 2020, 198, 108310. DOI: 10.1016/j.compscitech.2020.108310.
  • Yildiz, S.; Andreopoulos, Y.; Delale, F. Mode I Characterization of Toughened Epoxy Adhesive Joints Under Shock-Wave Loading. Int. J. Adhes. Adhes. 2019, 90, 71–87. DOI: 10.1016/j.ijadhadh.2019.02.001.
  • Gollins, K.; Elvin, N.; Delale, F. Characterization of Adhesive Joints Under High-Speed Normal Impact: Part I – Experimental Studies. Int. J. Adhes. Adhes. 2020, 98, 102529. DOI: 10.1016/j.ijadhadh.2019.102529.
  • Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Experimental Investigations on the Effect of a Wide Range of Strain Rates on Mechanical Properties of Epoxy Adhesives, and Prediction of Creep and Impact Strengths. J. Adhes. 2022, 98(5), 449–463. DOI: 10.1080/00218464.2020.1840368.
  • Chen, F.; Pinisetty, D.; Gupta, N. Study of the Compressive Properties of Adhesively Bonded Carbon Fiber Laminates at Different Strain Rates. J. Adhes. 2022, 98(16), 2582–2598. DOI: 10.1080/00218464.2021.1982706.
  • Houjou, K.; Sekiguchi, Y.; Shimamoto, K.; Akiyama, H.; Sato, C. Energy Release Rate and Crack Propagation Rate Behaviour of Moisture-Deteriorated Epoxy Adhesives Through the Double Cantilever Beam Method. J. Adhes. 2023, 99(6), 1016–1030. DOI: 10.1080/00218464.2022.2074295.
  • Berthe, L.; Arrigoni, M.; Boustie, M.; Cuq-Lelandais, J. P.; Broussillou, C.; Fabre, G.; Jeandin, M.; Guipont, V.; Nivard, M. State-Of-The-Art Laser Adhesion Test (LASAT). Nondestr. Test. Eval. 2011, 26(3–4), 303–317. DOI: 10.1080/10589759.2011.573550.
  • Gupta, V.; Argon, A. S.; Cornie, J. A.; Parks, D. M. Measurement of Interface Strength by Laser-Pulse-Induced Spallation. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct Process. 1990, 126(1–2), 105–117. DOI: 10.1016/0921-5093(90)90116-K.
  • Ikeda, R.; Cho, H.; Sawabe, A.; Takemoto, M. Laser Spallation Method to Measure Strength Against Mod-I Decohesion of CVD Diamond Films. Diamond Relat. Mater. 2005, 14(3–7), 631–636. DOI: 10.1016/j.diamond.2004.11.025.
  • Bardy, S.; Aubert, B.; Bergara, T.; Berthe, L.; Combis, P.; Hébert, D.; Lescoute, E.; Rouchausse, Y.; Videau, L. Development of a Numerical Code for Laser-Induced Shock Waves Applications. Opt. Laser Technol. 2020, 124, 105983. DOI: 10.1016/j.optlastec.2019.105983.
  • Arai, M.; Sato, Y.; Sugiura, D.; Nishimura, M.; Ito, H.; Cho, H. Inverse Analysis for Interface Fracture Toughness of Ti Coating Film by Laser Spallation Method. Adv. Eng. Software (1992). 2018, 120, 62–67. DOI: 10.1016/j.advengsoft.2016.04.003.
  • Kanamori, K.; Kimoto, Y.; Toriumi, S.; Yonezu, A. Evaluation of Adhesion Durability of Ni–P Coating Using Repeated Laser Shock Adhesion Test. Surf. Coat. Technol. 2020, 396, 125953. DOI: 10.1016/j.surfcoat.2020.125953.
  • Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L.; Dominguez, N. Numerical Modeling of Laser-Induced Shock Experiments for the Development of the Adhesion Test for Bonded Composite Materials. Compos. Struct. 2016, 152, 382–394. DOI: 10.1016/j.compstruct.2016.05.032.
  • Ehrhart, B.; Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L.; Bockenheimer, C.; Valeske, B. Development of a Laser Shock Adhesion Test for the Assessment of Weak Adhesive Bonded CFRP Structures. Int. J. Adhes. Adhes. 2014, 52, 57–65. DOI: 10.1016/j.ijadhadh.2014.04.002.
  • Radziejewska, J.; Sarzyński, A.; Strzelec, M.; Diduszko, R.; Hoffman, J. Evaluation of Residual Stress and Adhesion of Ti and TiN PVD Films by Laser Spallation Technique. Opt. Laser Technol. 2018, 104, 140–147. DOI: 10.1016/j.optlastec.2018.02.014.
  • Kandula, S. S. V.; Hartfield, C. D.; Geubelle, P. H.; Sottos, N. R. Adhesion Strength Measurement of Polymer Dielectric Interfaces Using Laser Spallation Technique. Thin Solid Films. 2008, 516(21), 7627–7635. DOI: 10.1016/j.tsf.2008.05.033.
  • Fabbro, R.; Max, C.; Fabre, E. Planar Laser‐Driven Ablation: Effect of Inhibited Electron Thermal Conduction. Phys. Fluids. 1985, 28(5), 1463–1481. DOI: 10.1063/1.864982.
  • Tahan, G.; Arrigoni, M.; Bidaud, P.; Videau, L.; Thévenet, D. Evolution of Failure Pattern by Laser Induced Shockwave within an Adhesive Bond. Opt. Laser Technol. 2020, 129, 106224–106221. DOI: 10.1016/j.optlastec.2020.106224.
  • Cuq-Lelandais, J. P.; Boustie, M.; Berthe, L.; de Rességuier, T.; Combis, P.; Colombier, J. P.; Nivard, M.; Claverie, A. Spallation Generated by Femtosecond Laser Driven Shocks in Thin Metallic Targets. J Phys D Appl Phys. 2009, 42(6), 065402. DOI: 10.1088/0022-3727/42/6/065402.
  • Watanabe, Y.; Fujisawa, S.; Yonezu, A.; Chen, X. Quantitative Evaluation of Adhesion Quality of Surface Coating by Using Pulse Laser-Induced Ultrasonic Waves. Surf. Coat. Technol. 2016, 286, 231–238. DOI: 10.1016/j.surfcoat.2015.12.026.
  • Kanamori, K.; Toriumi, S.; Kimoto, Y.; Yonezu, A. Repeated Laser Shock-Wave Adhesion Test for Metallic Coatings: Adhesion Durability and Its Mechanism Studied by Molecular Dynamics Simulation. Coatings. 2021, 11(3), 291. DOI: 10.3390/coatings11030291.
  • Wang, J.; Weaver, R. L.; Sottos, N. R. Tensile and Mixed-Mode Strength of a Thin Film-Substrate Interface Under Laser Induced Pulse Loading. J. Mech. Phys. Solids. 2004, 52(5), 999–1022. DOI: 10.1016/j.jmps.2003.09.029.
  • Ltd CC. Cemedine Co. Ltd., Technical sheet.18–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.