144
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Αn efficient numerical model for the simulation of debonding of adhesively bonded titanium/CFRP samples induced by repeated symmetric laser shocks

&
Pages 709-733 | Received 12 Jul 2023, Accepted 27 Aug 2023, Published online: 05 Sep 2023

References

  • Zhao, X.; Verhagen, W. J. C.; Curran, R. Disposal and Recycle Economic Assessment for Aircraft and Engine End of Life Solution Evaluation. Appl. Sci. 2020, 10(2), 522. DOI: 10.3390/app10020522.
  • Tserpes, K. Adhesive Bonding of Aircraft Structures. In Revolutionizing Aircraft Materials and Processes; Pantelakis, S. Tserpes, K., (Eds.); Springer International Publishing: Cham, 2020; pp. 337–357. DOI: 10.1007/978-3-030-35346-9_12.
  • Sabaghi, M.; Cai, Y.; Mascle, C.; Baptiste, P. Sustainability Assessment of Dismantling Strategies for End-Of-Life Aircraft Recycling. Resour. Conserv. Recycl. 2015, 102, 163–169. DOI: 10.1016/j.resconrec.2015.08.005.
  • Srinivasan, D. V.; Idapalapati, S. Review of Debonding Techniques in Adhesively Bonded Composite Structures for Sustainability. Sus. Mater. Technol. 2021, 30, e00345. DOI: 10.1016/j.susmat.2021.e00345.
  • Dang, W.; Kubouchi, M.; Yamamoto, S.; Sembokuya, H.; Tsuda, K. An Approach to Chemical Recycling of Epoxy Resin Cured with Amine Using Nitric Acid. Polymer. 2002, 43(10), 2953–2958. DOI: 10.1016/S0032-3861(02)00100-3.
  • Banea, M. D.; da Silva, L. F. M.; Carbas, R. J. C. Debonding on Command of Adhesive Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2015, 59, 14–20. DOI: 10.1016/j.ijadhadh.2015.01.014.
  • Banea, M. D. Debonding on Demand of Adhesively Bonded Joints: A Critical Review. Rev. Adhes. Adhesives. 2019, 7(1), 33–50. DOI: 10.7569/RAA.2019.097304.
  • Kormpos, P.; Unaldi, S.; Berthe, L.; Tserpes, K. A Laser Shock-Based Disassembly Process for Adhesively Bonded Ti/CFRP Parts. Processes. 2023, 11(2), 506. DOI: 10.3390/pr11020506.
  • Ghrib, M.; Berthe, L.; Mechbal, N.; Rébillat, M.; Guskov, M.; Ecault, R.; Bedreddine, N. Generation of Controlled Delaminations in Composites Using Symmetrical Laser Shock Configuration. Compos. Struct. 2017, 171, 286–297. DOI: 10.1016/j.compstruct.2017.03.039.
  • Ünaldi, S.; Papadopoulos, K.; Rondepierre, A.; Rouchausse, Y.; Karanika, A.; Deliane, F.; Tserpes, K.; Floros, G.; Richaud, E.; Berthe, L. Towards Selective Laser Paint Stripping Using Shock Waves Produced by Laser-Plasma Interaction for Aeronautical Applications on AA 2024 Based Substrates. Opt. Laser Technol. 2021, 141, 107095. DOI: 10.1016/j.optlastec.2021.107095.
  • Tserpes, K.; Papadopoulos, K.; Unaldi, S.; Berthe, L. Development of a Numerical Model to Simulate Laser-Shock Paint Stripping on Aluminum Substrates. Aerospace. 2021, 8(9), 233. DOI: 10.3390/aerospace8090233.
  • Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L.; Dominguez, N. Numerical Modeling of Laser-Induced Shock Experiments for the Development of the Adhesion Test for Bonded Composite Materials. Compos. Struct. 2016, 152, 382–394. DOI: 10.1016/j.compstruct.2016.05.032.
  • Papadopoulos, K.; Tserpes, K. Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping. Materials. 2022, 15(10), 3423. DOI: 10.3390/ma15103423.
  • Huh, H.; Kang, W. J.; Han, S. S. A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals. Exp. Mech. 2002, 42(1), 8–17. DOI: 10.1007/BF02411046.
  • Hosur, M. V.; Islam, S. M. W.; Vaidya, U. K.; Dutta, P. K.; Jeelani, S. Experimental Studies on the Punch Shear Characterization of Satin Weave Graphite/Epoxy Composites at Room and Elevated Temperatures. Mater. Sci. Eng. A. 2004, 368(1–2), 269–279. DOI: 10.1016/j.msea.2003.11.001.
  • Fabbro, R.; Peyre, P.; Berthe, L.; Scherpereel, X. Physics and Applications of Laser-Shock Processing. J. Laser Appl. 1998, 10(6), 265–279. DOI: 10.2351/1.521861.
  • LS-DYNA Keyword User’s Manual. LS-DYNA R11, Volume I, II, III, Livermore Software Technology Corporation (LSTC), 2015.
  • Chen, J.; Chen, W.; Chen, S.; Zhou, G.; Zhang, T. Shock Hugoniot and Mie-Grüneisen EOS of TiAl Alloy: A Molecular Dynamics Approach. Comput. Mater. Sci. 2020, 174, 109495. DOI: 10.1016/j.commatsci.2019.109495.
  • Zhang, Y.; Outeiro, J. C.; Mabrouki, T. On the Selection of Johnson-Cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting. Procedia CIRP. 2015, 31, 112–117. DOI: 10.1016/j.procir.2015.03.052.
  • Tehrani, M.; Yari Boroujeni, A.; Al-Haik, M. Modeling and Simulation of Impact and Perforation in FiberReinforced Composites. 2014.
  • Koumpias, A. S.; Tserpes, K. I.; Pantelakis, S. Progressive Damage Modelling of 3D Fully Interlaced Woven Composite Materials: PROGRESSIVE DAMAGE MODELLING of 3D WOVEN FABRICS. Fatigue Fract. Engng. Mater. Struct. 2014, 37(7), 696–706. DOI: 10.1111/ffe.12142.
  • Floros, I.; Tserpes, K. Numerical Simulation of Quasi-Static and Fatigue Debonding Growth in Adhesively Bonded Composite Joints Containing Bolts as Crack Stoppers. J. Adhes. 2021, 97(7), 611–633. DOI: 10.1080/00218464.2019.1690473.
  • Tserpes, K.; Floros, I. Fatigue Crack Growth Simulation in Adhesively Bonded Composite Joints. Fatigue Fract. Eng. Mater. Struct. 2019, 42(7), 1430–1440. DOI: 10.1111/ffe.12969.
  • Tserpes, K. I.; Peikert, G.; Floros, I. S. Crack Stopping in Composite Adhesively Bonded Joints Through Corrugation. Theor. Appl. Fract. Mech. 2016, 83, 152–157. DOI: 10.1016/j.tafmec.2015.10.003.
  • Floros, I. S.; Tserpes, K. I.; Löbel, T. M.-I. Mode-I, Mode-II and Mixed-Mode I+II Fracture Behavior of Composite Bonded Joints: Experimental Characterization and Numerical Simulation. Compos. B Eng. 2015, 78, 459–468. DOI: 10.1016/j.compositesb.2015.04.006.
  • Tserpes, K.; Sioutis, I.; Floros, G.; Moutsompegka, E. Numerical Simulation of Debonding of a Composite-To-Metal Adhesive Joint Subjected to Centrifugal Load. Eng. Fail. Anal. 2022, 136, 106131. DOI: 10.1016/j.engfailanal.2022.106131.
  • Sioutis, I.; Tserpes, K. Development and Numerical Implementation of a Modified Mixed-Mode Traction–Separation Law for the Simulation of Interlaminar Fracture of Co-Consolidated Thermoplastic Laminates Considering the Effect of Fiber Bridging. Materials. 2022, 15(15), 5108. DOI: 10.3390/ma15155108.
  • Sioutis, I.; Tserpes, K. A Mixed-Mode Fatigue Crack Growth Model for Co-Consolidated Thermoplastic Joints. Int. J. Fatigue. 2023, 173, 107682. DOI: 10.1016/j.ijfatigue.2023.107682.
  • Kormpos, P.; Tserpes, K.; Floros, G. Towards Simulation of Disassembly of Bonded Composite Parts Using the Laser Shock Technique. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1226(1), 012081. DOI: 10.1088/1757-899X/1226/1/012081.
  • Kormpos, P.; Unaldi, S.; Ayad, M.; Berthe, L.; Tserpes, K. Towards the Development of a Laser Shock-Based Disassembly Process for Adhesively Bonded Structural Parts: Experiments and Numerical Simulation. Proceedings of the 20th European Conference on Composite Materials - Composites Meet Sustainability B, 2022; p 873–880. DOI: 10.5075/epfl-298799_978-2-9701614-0-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.