169
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Debonding-on-demand Fe3O4-epoxy adhesively bonded dissimilar joints via electromagnetic induction heating

, , , , &
Pages 734-764 | Received 23 May 2023, Accepted 04 Sep 2023, Published online: 13 Sep 2023

References

  • Mulcahy, K. R.; Kilpatrick, A. F. R.; Harper, G. D. J.; Walton, A.; Abbott, A. P. Debondable Adhesives and Their Use in Recycling. Green Chem. 2022, 24(1), 36–61. DOI: 10.1039/d1gc03306a.
  • MORPHO H2020 – Embedded Life-Cycle Management for Smart Multimaterials Structures: Application to Engine Components. https://morpho-h2020.eu/ (accessed Feb. 11, 2023).
  • Jairaja, R.; Naik, G. N. Weak Bond Effects in Adhesively Bonded Joints Between the Dissimilar Adherends. J. Adhes. 2021, 97(8), 760–782. DOI: 10.1080/00218464.2019.1702027.
  • Two Boeing 787 Dreamliners are already being scrapped | CNN Travel.”|“Two Boeing 787 Dreamliners are already being scrapped | CNN Travel. https://edition.cnn.com/travel/article/10-year-old-boeing-787s-scrapped/index.html (accessed Apr. 7, 2023).
  • Bin Anwar, T.; Lewis, T. N.; Berges, A. J.; Gately, T. J.; Bardeen, C. J. Nanosecond Laser Debonding of Strong Adhesives. J. Adhes. 2023. DOI: 10.1080/00218464.2023.2211011.
  • Zhao, B.; Hardiman, M.; Ryan, K. M.; O’Reilly, E.; McCarthy, C. Formation of Reworkable Nanocomposite Adhesives by Dielectric Heating of Epoxy Resin Embedded Fe3O4 Hollow Spheres. CrystEngcomm. 2016, 18(32), 6096–6101. DOI: 10.1039/c6ce01359g.
  • Sánchez-Romate, X. F.; Del Bosque, A.; Crespo, A.; Alonso, R.; Sánchez, M.; Ureña, A. Fe3O4-Nanoparticle-Doped Epoxy Resin as a Detachable Adhesive by Electromagnetic Heating for GFRP Single-Lap Joints. Nanomaterials. 2022, 12(21), 3913. DOI: 10.3390/nano12213913.
  • Piazza, G.; Burczyk, M.; Gerini-Romagnoli, M.; Belingardi, G.; Nassar, S. A. Effect of Thermally Expandable Particle Additives on the Mechanical and Reversibility Performance of Adhesive Joints. J. Adv. Joining Proc. 2022, Jun, 5. DOI: 10.1016/j.jajp.2021.100088.
  • Cheng, X.; Zhou, Y.; Charles, A. D. M.; Yu, Y.; Islam, M. S.; Peng, S.; Wang, J.; Rider, A. N.; Lim, M.; Timchenko, V., et al. Enabling Contactless Rapid On-Demand Debonding and Rebonding Using Hysteresis Heating of Ferrimagnetic Nanoparticles. Mater. Des. 2021, 210, 110076. DOI: 10.1016/j.matdes.2021.110076.
  • Kanidi, M.; Loura, N.; Frengkou, A.; Milickovic, T. K.; Trompeta, A. F.; Charitidis, C. Inductive Thermal Effect on Thermoplastic Nanocomposites with Magnetic Nanoparticles for Induced-Healing, Bonding and Debonding On-Demand Applications. J. Compos. Sci. 2023, 7(2). DOI: 10.3390/jcs7020074.
  • He, Z.; Luo, Q.; Li, Q.; Zheng, G.; Sun, G. Fatigue Behavior of CFRP/Al Adhesive Joints — Failure Mechanisms Study Using Digital Image Correlation (DIC) Technique. Thin-Walled Struct. 2022, 174, (September 2021), 109075. DOI: 10.1016/j.tws.2022.109075.
  • Yuan, Y.; Zhang, Q.; Li, X.; Wuyun, Q.; Zhang, Z. Effective Method for Measuring Shear Nonlinearity of Nanocomposites Using Digital Image Correlation. J. Nondestr. Eval. 2021, 40(3), 1–11. DOI: 10.1007/s10921-021-00790-w.
  • Sun, F.; Zhang, R.; Blackman, B. R. K. Determination of the Mode I Crack Tip Opening Rate and the Rate Dependent Cohesive Properties for Structural Adhesive Joints Using Digital Image Correlation. Int. J. Solids Struct. 2021, 217-218, 60–73. DOI: 10.1016/j.ijsolstr.2021.01.034.
  • Sun, G.; Liu, X.; Zheng, G.; Gong, Z.; Li, Q. On Fracture Characteristics of Adhesive Joints with Dissimilar Materials - an Experimental Study Using Digital Image Correlation (DIC) Technique on Fracture Characteristics of Adhesive Joints with Dissimilar Materials – an Experimental Study Using Digit, No. June. 2018. DOI: 10.1016/j.compstruct.2018.06.018.
  • Bai, R.; Bao, S.; Lei, Z.; Yan, C.; Han, X. Finite Element Inversion Method for Interfacial Stress Analysis of Composite Single-Lap Adhesively Bonded Joint Based on Full-Field Deformation. Int. J. Adhes. Adhes. 2018, 81, (September 2021), 48–55. DOI: 10.1016/j.ijadhadh.2017.11.011.
  • Iron Oxide Nanopowder/Nanoparticles (Fe3O4, high purity, 99.5+%, 15-20 nm). https://www.us-nano.com/inc/sdetail/435 (accessed Aug. 8, 2022).
  • Li, Q.; Kartikowati, C. W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation Between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Sci. Rep. 2017, 7(1), 1–4. DOI: 10.1038/s41598-017-09897-5.
  • Lenin, N.; Karthik, A.; Sridharpanday, M.; Selvam, M.; Srither, S. R.; Arunmetha, S.; Paramasivam, P.; Rajendran, V. Electrical and Magnetic Behavior of Iron Doped Nickel Titanate (Fe3+/NiTio3) Magnetic Nanoparticles. J. Magn. Magn. Mater. 2016, 397(January), 281–286. DOI: 10.1016/j.jmmm.2015.08.115.
  • Scotch-Weld TM EPX TM Adhesive DP490.
  • Srinivasan, D. V.; Ravichandran, V.; Idapalapati, S. Failure Analysis of GFRP Single Lap Joints Tailored with a Combination of Tough Epoxy and Hyperelastic Adhesives. Compos. Part B. 2020, 200(June), 108255. DOI: 10.1016/j.compositesb.2020.108255.
  • Caglar, H.; Idapalapati, S.; Sharma, M.; Sin, K. Debonding of Carbon Fiber Veil Interleaved Adhesively Bonded GFRP Joints via Joule Heating. Compos. Part B. 2022, 230, (July 2021), 109544. DOI: 10.1016/j.compositesb.2021.109544.
  • Caglar, H.; Idapalapati, S.; Sharma, M.; Sin, C. K. Debonding of Bonded Composite Joints with TEP Modified Epoxy Adhesives. J. Adhes. 2022, 99 (10), 1–24. DOI: 10.1080/00218464.2022.2152333.
  • ASTM Standard D3433-99. Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints. ASTM int. 2012, 99,(Reapproved), 3.
  • Astm. ASTM D638: Standard Test Method for Tensile Properties of Plastics. ASTM Standards; January, 2004.
  • ASTM E8. ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1. Annu. B. ASTM Standard. 2010, 4(C), 1–27. DOI:10.1520/E0008.
  • He, Y.; Chen, Q.; Yang, S.; Lu, C.; Feng, M.; Jiang, Y.; Cao, G.; Zhang, J.; Liu, C. Micro-Crack Behavior of Carbon Fiber Reinforced Fe3O4/Graphene Oxide Modified Epoxy Composites for Cryogenic Application. Compos. Part A Appl. Sci. Manuf. 2018, 108, (December 2017), 12–22. DOI: 10.1016/j.compositesa.2018.02.014.
  • Li, G.; Fei, W. D. Abnormal Thermal Expansion Behavior of Aluminum Borate Whisker Reinforced Aluminum Composite Containing Fe3O4 Particles. Mater. Chem. Phys. 2006, 99(1), 34–38. DOI: 10.1016/j.matchemphys.2005.09.050.
  • Jouyandeh, M.; Jazani, O. M.; Navarchian, A. H.; Shabanian, M.; Vahabi, H.; Saeb, M. R. Bushy-Surface Hybrid Nanoparticles for Developing Epoxy Superadhesives. Appl. Surf. Sci. 2019, 479. DOI: 10.1016/j.apsusc.2019.01.283.
  • Shabeer, A.; Garg, A.; Sundararaman, S.; Chandrashekhara, K.; Flanigan, V.; Kapila, S. Dynamic Mechanical Characterization of a Soy Based Epoxy Resin System. J. Appl. Polym. Sci. 2005, 98(4), 1772–1780. DOI: 10.1002/app.22362.
  • Jouyandeh, M.; Paran, S. M. R.; Shabanian, M.; Ghiyasi, S.; Vahabi, H.; Badawi, M.; Formela, K.; Puglia, D.; Saeb, M. R. Curing Behavior of Epoxy/Fe3O4 Nanocomposites: A Comparison Between the Effects of Bare Fe3O4, Fe3O4/SiO2/Chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-Modified Nanofillers. Prog. Org. Coat. 2018, 123(June), 10–19. DOI: 10.1016/j.porgcoat.2018.06.006.
  • Vattathurvalappil, S. H.; Haq, M.; Kundurthi, S. Hybrid Nanocomposites—An Efficient Representative Volume Element Formulation with Interface Properties. Polym. Polym. Composites. 2022, 30. DOI: 10.1177/09673911221084651.
  • Voβ, M.; Vallée, T. Effects of Curie Particle Induced Accelerated Curing on Thermo Mechanical Performance of 2K Structural Adhesives–Part I: Bulk Properties. J. Adhes. 2021, 98(9), 1–42. DOI: 10.1080/00218464.2021.1909482.
  • Apalak, M. K.; Gunes, R. On Non-Linear Thermal Stresses in an Adhesively Bonded Single Lap Joint. Comput. Struct. 2002, 80(1), 85–98. DOI: 10.1016/S0045-7949(01)00139-0.
  • Blackman, B. R. K.; Hadavinia, H.; Kinloch, A. J.; Paraschi, M.; Williams, J. G. The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test. Eng. Fract. Mech. 2003, 70(2), 233–248. DOI: 10.1016/S0013-7944(02)00031-0.
  • Buchman, A.; Dodiuk-Kenig, H.; Dotan, A.; Tenne, R.; Kenig, S. Toughening of Epoxy Adhesives by Nanoparticles. J. Adhes. Sci. Technol. 2009, 23(5), 753–768. DOI: 10.1163/156856108X379209.
  • Er Wang, X.; Pang, K.; Huang, X.; Yang, J.; Ye, J.; Hou, X. Insights into the Micromechanical Response of Adhesive Joint with Stochastic Surface Micro-Roughness. Eng. Fract. Mech. 2023, 277, (August 2022), 108954. DOI: 10.1016/j.engfracmech.2022.108954.
  • Demirci, S.; Dikici, T.; Güllüoğlu, A. N. Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications. J. Mater. Eng. Perform. 2022, 31(2), 1503–1511. DOI: 10.1007/s11665-021-06232-y.
  • Costa, M. Y. P.; Venditti, M. L. R.; Voorwald, H. J. C.; Cioffi, M. O. H.; Cruz, T. G. Effect of WC-10%co-4%cr Coating on the Ti-6Al-4V Alloy Fatigue Strength. Mater. Sci. Eng. A. 2009, 507(1–2), 29–36. DOI: 10.1016/j.msea.2008.11.068.
  • Lane, B.; Sherratt, P.; Hu, X.; Harland, A. Measurement of Strain and Strain Rate During the Impact of Tennis Ball Cores. Appl. Sci. (Switzerland). 2018, 8(3). DOI: 10.3390/app8030371.
  • Kellar, E. J. C. Joining Similar and Dissimilar Materials. Adhesive Bonding: Science, Technology And Applications. 2021. DOI: 10.1016/B978-0-12-819954-1.00004-6.
  • Seong, M. S.; Kim, T. H.; Nguyen, K. H.; Kweon, J. H.; Choi, J. H. A Parametric Study on the Failure of Bonded Single-Lap Joints of Carbon Composite and Aluminum. Compos. Struct. 2008, 86(1–3). DOI: 10.1016/j.compstruct.2008.03.026.
  • Kafkalidis, M. S.; Thouless, M. D. The Effects of Geometry and Material Properties on the Fracture of Single Lap-Shear Joints. Int. J. Solids. Struct. 2002, 39(17). DOI: 10.1016/S0020-7683(02)00344-X.
  • Sokolinsky, V. S.; Indermuehle, K. C.; Hurtado, J. A. Numerical Simulation of the Crushing Process of a Corrugated Composite Plate. Compos. Part A Appl. Sci. Manuf. 2011, 42(9). DOI: 10.1016/j.compositesa.2011.04.017.
  • Yang, X.; Yao, L.; Xia, Y.; Zhou, Q. Effect of Base Steels on Mechanical Behavior of Adhesive Joints with Dissimilar Steel Substrates. Int. J. Adhes. Adhes. 2014, 51. DOI: 10.1016/j.ijadhadh.2014.02.010.
  • Bayerl, T.; Duhovic, M.; Mitschang, P.; Bhattacharyya, D. The Heating of Polymer Composites by Electromagnetic Induction - a Review. Compos. Part A Appl. Sci. Manuf. 2014, 57(2014), 27–40. DOI: 10.1016/j.compositesa.2013.10.024.
  • Severijns, C.; de Freitas, S. T.; Poulis, J. A. Susceptor-Assisted Induction Curing Behaviour of a Two Component Epoxy Paste Adhesive for Aerospace Applications. Int. J. Adhes. Adhes. 2017, 75, 155–164. DOI: 10.1016/j.ijadhadh.2017.03.005.
  • Qian, L.; Peng, J.; Xiang, Z.; Pan, Y.; Lu, W. Effect of Annealing on Magnetic Properties of Fe/Fe3O4 Soft Magnetic Composites Prepared by in-Situ Oxidation and Hydrogen Reduction Methods. J. Alloys Compd. 2019, 778, 712–720. DOI: 10.1016/j.jallcom.2018.11.184.
  • Rudnev, V.; Loveless, D.; Cook, R. L. Handbook Of Induction Heating. 2017. DOI: 10.1201/9781315117485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.