642
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Reverse Osmosis Separation Performances of Ethanol/Water Mixtures and Design of Ethanol Concentration Processes

ORCID Icon, , &
Article: 2294934 | Received 30 Jul 2023, Accepted 10 Dec 2023, Published online: 05 Feb 2024

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH. 2016. Second generation bioethanol production: a critical review. Renew Sust Energ Rev. 66:631–653. doi: 10.1016/j.rser.2016.07.015.
  • Akamatsu K, Murakami T, Sugawara T, Kikuchi R, Nakao S. 2011. Stable equilibrium shift of methane steam reforming in membrane reactors with hydrogen-selective silica membranes. AIChE J. 57:1882–1888. doi: 10.1002/aic.12404.
  • Angeli SD, Monteleone G, Giaconia A, Lemonidou AA. 2014. State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydro Ener. 39:1979–1997. doi: 10.1016/j.ijhydene.2013.12.001.
  • Bartholomew TV, Mey L, Arena JT, Siefert NS, Mauter MS. 2017. Osmotically assisted reverse osmosis for high salinity brine treatment. Desalination. 421:3–11. doi: 10.1016/j.desal.2017.04.012.
  • Biasi LCK, Batista FRM, Zemp RJ, Romano ALR, Heinkenschloss M, Meirelles AJA. 2021. Parastillation and metastillation applied to bioethanol and neutral alcohol purification with energy savings. Chem Eng Process. 162:108334. doi: 10.1016/j.cep.2021.108334.
  • Broda M, Kierzkowska AM, Baudouin D, Imtiaz Q, Copéret C, Müller CR. 2012. Sorbent-enhanced methane reforming over a Ni–Ca-based, bifunctional catalyst sorbent. ACS Catal. 2:1635–1646. doi: 10.1021/cs300247g.
  • Chen X, Yip NY. 2018. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environ Sci Technol. 52:2242–2250. doi: 10.1021/acs.est.7b05774.
  • Chiao YH, Mai Z, Hung WS, Matsuyama H. 2023. Osmotically assisted solvent reverse osmosis membrane for dewatering of aqueous ethanol solution. J Membr Sci. 672:121434. doi: 10.1016/j.memsci.2023.121434.
  • Chong TH, Loo SL, Krantz WB. 2015. Energy-efficient reverse osmosis desalination process. J Membr Sci. 473:177–188. doi: 10.1016/j.memsci.2014.09.005.
  • Dawood F, Anda M, Shafiullah GM. 2020. Hydrogen production for energy: An overview. Int J Hydro Ener. 45:3847–3869. doi: 10.1016/j.ijhydene.2019.12.059.
  • Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM. 2014. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res. 53:14474–14484. doi: 10.1021/ie502751h.
  • Dobson HJE. 1925. CCCXCVII.—the partial pressures of aqueous ethyl alcohol. J Chem Soc Trans. 127:2866–2873. doi: 10.1039/CT9252702866.
  • Ghungrud SA, Vaidya PD. 2020. Improved hydrogen production from sorption-enhanced steam reforming of ethanol (SESRE) using multifunctional materials of cobalt catalyst and Mg-, Ce-, and Zr-modified CaO sorbents. Ind Eng Chem Res. 59:693–703. doi: 10.1021/acs.iecr.9b05472.
  • Guo J, Zhang G, Wu W, Ji S, Qin Z, Liu Z. 2010. Dynamically formed inner skin hollow fiber polydimethylsiloxane/polysulfone composite membrane for alcohol permselective pervaporation. Chem Eng J. 158:558–565. doi: 10.1016/j.cej.2010.01.053.
  • Guo M, Song W. 2019. The growing U.S. bioeconomy: drivers, development and constraints. N Biotechnol. 49:48–57. doi: 10.1016/j.nbt.2018.08.005.
  • Hall DJ, Mash CJ, Penberton RC. 1979. Vapor–liquid equilibrium for the systems water + methanol, water + ethanol, methanol + ethanol and water + methanol + ethanol. NPL Rep Chem. 95:1–32.
  • Jia H, Xu H, Sheng X, Yang X, Shen W, Goldbach A. 2020. High-temperature ethanol steam reforming in PdCu membrane reactor. J Membr Sci. 605:118083. doi: 10.1016/j.memsci.2020.118083.
  • Kamtsikakis A, McBride S, Zoppe JO, Weder C. 2021. Cellulose nanofiber nanocomposite pervaporation membranes for ethanol recovery. ACS Appl Nano Mater. 4:568–579. doi: 10.1021/acsanm.0c02881.
  • Kataoka T, Tsuru T, Nakao S, Kimura S. 1991a. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse osmosis based on the solution-diffusion model. J Chem Eng Japan. 24:326–333. doi: 10.1252/jcej.24.326.
  • Kataoka T, Tsuru T, Nakao S, Kimura S. 1991b. Membrane transport properties of pervaporation and vapor permeation in ethanol–water system using polyacrylonitrile and cellulose acetate membranes. J Chem Eng Japan. 24:334–339. doi: 10.1252/jcej.24.334.
  • Kaymak DB. 2019. Design and control of an alternative bioethanol purification process via reactive distillation from fermentation broth. Ind Eng Chem Res. 58:1675–1685. doi: 10.1021/acs.iecr.8b04832.
  • Kedem O, Katchalsky A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 27:229–246. doi: 10.1016/0006-3002(58)90330-5.
  • Kimura S, Sourirajan S. 1967. Analysis of data in reverse osmosis with porous cellulose acetate membranes used. AIChE J. 13:497–503. doi: 10.1002/aic.690130319.
  • Kiss AA, Suszwalak DJPC. 2012. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol. 86:70–78. doi: 10.1016/j.seppur.2011.10.022.
  • Kumakiri I, Tsuru T, Nakao S, Kimura S. 2000. Reverse osmosis performance at high pressure with high water recovery. J Chem Eng Japan. 33:414–419. doi: 10.1252/jcej.33.414.
  • Liu C, Dong G, Tsuru T, Matsuyama H. 2021. Organic solvent reverse osmosis membranes for organic liquid mixture separation: a review. J Membr Sci. 620:118882. doi: 10.1016/j.memsci.2020.118882.
  • Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti HC, Bernardino CD, de Amorim Neto HB, de Amorim HV. 2016. Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol. 47(Suppl 1):64–76. doi: 10.1016/j.bjm.2016.10.003.
  • Moriyama N, Nagasawa H, Kanezashi M, Tsuru T. 2022. Water permeation in gas and liquid phases through organosilica membranes: a unified theory of reverse osmosis, pervaporation, and vapor permeation. Chem Eng Sci. 263:118083. doi: 10.1016/j.ces.2022.118083.
  • Muradov N. 2017. Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int J Hydro Ener. 42:14058–14088. doi: 10.1016/j.ijhydene.2017.04.101.
  • Ni M, Leung DYC, Leung MKH. 2007. A review on reforming bio-ethanol for hydrogen production. Int J Hydro Ener. 32:3238–3247. doi: 10.1016/j.ijhydene.2007.04.038.
  • Nikolskaya AV. 1946. The vapor pressure of ternary stratified systems. Aqueous alcohol solutions of potassium carbonate and magnesium sulfate. Zh Fiz Khim. 20:421–431
  • Peters CD, Hankins NP. 2019. Osmotically assisted reverse osmosis (OARO): five approaches to dewatering saline brines using pressure-driven membrane processes. Desalination. 458:1–13. doi: 10.1016/j.desal.2019.01.025.
  • Phutela RC, Kooner ZS, Fenby DV. 1979. Vapour pressure study of deuterium exchange reactions in water-ethanol systems: equilibrium constant determination. Aust J Chem. 32:2353–2359. doi: 10.1071/CH9792353.
  • Renon H, Prausnitz JM. 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14:135–144. doi: 10.1002/aic.690140124.
  • Soccol CR, de Souza Vandenberghe LP, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk JMF, Ferrara MA, et al. 2010. Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol. 101:4820–4825. doi: 10.1016/j.biortech.2009.11.067.
  • Togo N, Nakagawa K, Shintani T, Yoshioka T, Takahashi T, Kamio E, Matsuyama H. 2019. Osmotically assisted reverse osmosis utilizing hollow fiber membrane module for concentration process. Ind Eng Chem Res. 58:6721–6729. doi: 10.1021/acs.iecr.9b00630.
  • Wang Z, Deshmukh A, Du Y, Elimelech M. 2020. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Res. 170:115317. doi: 10.1016/j.watres.2019.115317.
  • Wang Z, Feng D, Chen Y, He D, Elimelech M. 2021. Comparison of energy consumption of osmotically assisted reverse osmosis and low-salt-rejection reverse osmosis for brine management. Environ Sci Technol. 55:10714–10723. doi: 10.1021/acs.est.1c01638.
  • Yamamoto H, Terano T, Nishi Y, Tokunaga J. 1995. Vapor-liquid equilibria for methanol + ethanol + calcium chloride, + ammonium iodide, and + sodium iodide at 298.15 K. J Chem Eng Data. 40:472–477. doi: 10.1021/je00018a026.
  • Zhan X, Lu J, Tan T, Li J. 2012. Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation: preparation and pervaporation performance. Appl Surf Sci. 259:547–556. doi: 10.1016/j.apsusc.2012.05.167.
  • Zhou H, Shi R, Jin W. 2014. Novel organic–inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution. Sep Purif Technol. 127:61–69. doi: 10.1016/j.seppur.2014.02.032.