442
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kinetics Analysis of Methylcyclohexane Dehydrogenation over Se-Modified Pt/TiO2 Catalysts

ORCID Icon, , &
Article: 2301533 | Received 01 Nov 2023, Accepted 29 Dec 2023, Published online: 01 Feb 2024

References

  • Akram MS, Aslam R, Alhumaidan FS, Usman MR. 2020. An exclusive kinetic model for the methylcyclohexane dehydrogenation over alumina-supported Pt catalysts. Int J Chem Kinet. 52:415–449. doi:10.1002/kin.21360.
  • Alhumaidan F, Cresswell D, Garforth A. 2018. Long-term deactivation of supported Pt catalysts in the dehydrogenation of methylcyclohexane to toluene. Ind Eng Chem Res. 49:9764–9770. doi:10.1021/ie1013025.
  • Alhumaidan F, Cresswell D, Garforth A. 2011. Hydrogen storage in liquid organic hydride: Producing hydrogen catalytically from methylcyclohexane. Energy Fuels. 25:4217–4234. doi:10.1021/ef200829x.
  • Boufaden N, Akkari R, Pawelec B, Fierro JLG, Zina MS, Ghorbel A. 2016. Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts. J. Mol. Catal. A Chem. 420:96–106. doi:10.1016/j.molcata.2016.04.011.
  • Chen X, Gierlich CH, Schötz S, Blaumeiser D, Bauer T, Libuda J, Palkovits R. 2021. Hydrogen production based on liquid organic hydrogen carriers through sulfur doped platinum catalysts supported on TiO2. ACS Sustainable Chem Eng. 9:6561–6573. doi:10.1021/acssuschemeng.0c09048.
  • Hassan IA, Ramadan HS, Saleh MA, Hissel D. 2021. Hydrogen storage technologies for stationary and mobile applications: Review, analysis, and perspectives. Renew Sustain Energy Rev. 149:111311. doi:10.1016/j.rser.2021.111311.
  • Ito H, Oshima K, Yamamoto T, Ting KW, Toyao T, Sugiyama T, Kato Y, Morita K, Ohashi A, Kishida M. 2022. Improved catalytic stability of Pt/TiO2 catalysts for methylcyclohexane dehydrogenation via selenium addition. Int J Hydrog Energy. 47:38635–38643. doi:10.1016/j.ijhydene.2022.09.055.
  • Kojima Y. 2019. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrog. Energy. 44:18179–18192. doi:10.1016/j.ijhydene.2019.05.119.
  • Lamb KE, Dolan MD, Kennedy DF. 2019. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int J Hydrog Energy. 44:3580–3593. doi:10.1016/j.ijhydene.2018.12.024.
  • Marques F, Balcerzak M, Winkelmann F, Zepon G, Felderhoff M. 2021. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ Sci. 14:5191–5227. doi:10.1039/D1EE01543E.
  • Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D. 2019. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels. 33:2778–2796. doi:10.1021/acs.energyfuels.9b00296.
  • Murata K, Kurimoto N, Yamamoto Y, Oda A, Ohyama J, Satsuma A. 2021. Structure–property relationships of Pt–Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane. ACS Appl Nano Mater. 4:4532–4541. doi:10.1021/acsanm.1c00128.
  • Nakano A, Manabe S, Higo T, Seki H, Nagatake S, Yabe T, Ogo S, Nagatsuka T, Sugiura Y, Iki H, et al. 2017. Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst. Appl Catal A Gen. 543:75–81. doi:10.1016/j.apcata.2017.06.017.
  • Nakaya Y, Miyazaki M, Yamazoe S, Shimizu K, Furukawa S. 2020. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy. ACS Catal. 10:5163–5172. doi:10.1021/acscatal.0c00151.
  • Nagatake S, Higo T, Ogo S, Sugiura Y, Watanabe R, Fukuhara C, Sekine Y. 2016. Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst. Catal Lett. 146:54–60. doi:10.1007/s10562-015-1623-3.
  • Oda K, Akamatsu K, Sugawara T, Kikuchi R, Segawa A, Nakao S. 2010. Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind Eng Chem Res. 49:11287–11293. doi:10.1021/ie101210x.
  • Okada Y, Sasaki E, Watanabe E, Hyodo S, Nishijima H. 2006. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int J Hydrog Energy. 31:1348–1356. doi:10.1016/j.ijhydene.2005.11.014.
  • Ouma CNM, Obodo KO, Modisha PM, Rhyman L, Ramasami P, Bessarabov D. 2021. Effect of chalcogen (S, Se and Te) surface additives on the dehydrogenation of a liquid organic hydrogen carrier system, octahydroindole–indole, on a Pt(111) surface. Appl Surf Sci. 566:150636. doi:10.1016/j.apsusc.2021.150636.
  • Sekine Y, Higo T. 2021. Recent trends on the dehydrogenation catalysis of liquid organic hydrogen carrier (LOHC): A review. Top Catal. 64:470–480. doi:10.1007/s11244-021-01452-x.
  • Shen LL, Xia K, Lang WZ, Chu LF, Yan X, Guo YJ. 2017. The effects of calcination temperature of support on PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. Chem Eng J. 324:336–346. doi:10.1016/j.cej.2017.05.058.
  • Sugiura Y, Nagatsuka T, Kubo K, Hirano Y, Nakamura A, Miyazawa K, Iizuka Y, Furuta S, Iki H, Higo T, et al. 2017. Dehydrogenation of methylcyclohexane over Pt/TiO2-Al2O3 catalysts. Chem Lett. 46:1601–1604. doi:10.1246/cl.170722.
  • Suzuki T, Izato Y, Miyake A. 2021. Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane. J Loss Prev Process Ind. 71:104479. doi:10.1016/j.jlp.2021.104479.
  • Usman M, Cresswell D, Garforth A. 2012. Detailed reaction kinetics for the dehydrogenation of methylcyclohexane over Pt catalyst. Ind Eng Chem Res. 51:158–170. doi:10.1021/ie201539v.
  • Wu K, Chen F, Wang F, Huang Y, Shen Z, Wang W, Yang Y. 2021. Preparation of Pt supported on mesoporous Mg–Al oxide catalysts for efficient dehydrogenation of methylcyclohexane. Int J Hydrog Energy. 46:25513–25519. doi:10.1016/j.ijhydene.2021.05.056.
  • Yang X, Song Y, Cao T, Wang L, Song H, Lin W. 2020. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Mol Catal. 492:110971. doi:10.1016/j.mcat.2020.110971.
  • Zhang C, Liang X, Liu S. 2011. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char. Int J Hydrog Energy. 36:8902–8907. doi:10.1016/j.ijhydene.2011.04.175.