301
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of SiO2 Addition to Highly Loaded Ni on CeO2 for CO2 Methanation

, &
Article: 2303309 | Received 20 Oct 2023, Accepted 04 Jan 2024, Published online: 21 Feb 2024

References

  • Azurdia JA, McCrum A, Laine RM. 2008. Systematic synthesis of mixed-metal oxides in NiO–Co3O4, NiO–MoO3, and NiO–CuO systems via liquid-deed flame spray pyrolysis. J Mater Chem. 18:3249–3258. doi: 10.1039/b801745j.
  • Beierlein D, Häussermann D, Pfeifer M, Schwarz T, Stöwe K, Traa Y, Klemm E. 2019. Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive? Appl Catal B Environ. 247:200–219. doi: 10.1016/j.apcatb.2018.12.064.
  • Bian Z, Chan YM, Yu Y, Kawi S. 2020. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study. Catal Today. 347:31–38. doi: 10.1016/j.cattod.2018.04.067.
  • Centi G, Quadrelli EA, Perathoner S. 2013. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci. 6:1711–1731. doi: 10.1039/c3ee00056g.
  • Charisiou ND, Papageridis KN, Siakavelas G, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA. 2019. The influence of SiO2 doping on the Ni/ZrO2 supported catalyst for hydrogen production through the glycerol steam reforming reaction. Catal Today. 319:206–219. doi: 10.1016/j.cattod.2018.04.052.
  • Dadashzadeh M, Kashkarov S, Makarov D, Molkov V. 2018. Risk assessment methodology for onboard hydrogen storage. Int J Hydrogen Energy. 43:6462–6475. doi: 10.1016/j.ijhydene.2018.01.195.
  • Fujiwara K, Kayano S, Nishijima M, Kobayashi K, Nanba T, Tsujimura T. 2021. Porous NiO prepared by flame spray pyrolysis for 80 wt% Ni–CeO2 catalyst and its activity for CO2 methanation. J Jpn Petrol Inst. 64:261–270. doi: 10.1627/jpi.64.261.
  • Fujiwara K, Sotiriou GA, Pratsinis SE. 2015. Enhanced Ag+ ion release from aqueous nanosilver suspensions by absorption of ambient CO2. Langmuir. 31:5284–5290. doi: 10.1021/la504946g.
  • Fujiwara K, Tada S, Honma T, Sasaki H, Nishijima M, Kikuchi R. 2019. Influences of particle size and crystallinity of highly loaded CuO/ZrO2 on CO2 hydrogenation to methanol. AIChE J. 65:e16717.
  • Fukuhara C, Hayakawa K, Suzuki Y, Kawasaki W, Watanabe R. 2017. A novel nickel-based structured catalyst for CO2 methanation: a honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Appl Catal A Gen. 532:12–18. doi: 10.1016/j.apcata.2016.11.036.
  • Graetz J. 2009. New approaches to hydrogen storage. Chem Soc Rev. 38:73–82. doi: 10.1039/b718842k.
  • Güntner AT, Righettoni M, Pratsinis SE. 2016. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens Actuators B Chem. 223:266–273. doi: 10.1016/j.snb.2015.09.094.
  • He L, Lin Q, Liu Y, Huang Y. 2014. Unique catalysis of Ni–Al hydrotalcite derived catalyst in CO2 methanation: cooperative effect between Ni nanoparticles and a basic support. J Energy Chem. 23:587–592. doi: 10.1016/S2095-4956(14)60144-3.
  • He S, Jing Q, Yu W, Mo L, Lou H, Zheng X. 2009. Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 prepared with nickel citrate precursor. Catal Today. 148:130–133. doi: 10.1016/j.cattod.2009.03.009.
  • Jia X, Zhang X, Rui N, Hu X, Liu C-j. 2019. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl Catal B Environ. 244:159–169. doi: 10.1016/j.apcatb.2018.11.024.
  • Li S, Ren Y, Biswas P, Stephen DT. 2016. Flame aerosol synthesis of nanostructured materials and functional devices: processing, modeling, and diagnostics. Prog Energy Combust Sci. 55:1–59. doi: 10.1016/j.pecs.2016.04.002.
  • Lin S, Hao Z, Shen J, Chang X, Huang S, Li M, Ma X. 2021. Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction. J Energy Chem. 59:334–342. doi: 10.1016/j.jechem.2020.11.011.
  • Liu J, Li C, Wang F, He S, Chen H, Zhao Y, Wei M, Evans DG, Duan X. 2013. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catal Sci Technol. 3:2627–2633. doi: 10.1039/c3cy00355h.
  • Liu J, Wu X, Chen Y, Zhang Y, Zhang T, Ai H, Liu Q. 2022. Why Ni/CeO2 is more active than Ni/SiO2 for CO2 methanation? Identifying effect of Ni particle size and oxygen vacancy. Int J Hydrogen Energy. 47:6089–6096. doi: 10.1016/j.ijhydene.2021.11.214.
  • Mädler L, Stark W, Pratsinis S. 2002. Flame-made ceria nanoparticles. J Mater Res. 17:1356–1362. doi: 10.1557/JMR.2002.0202.
  • Muroyama H, Tsuda Y, Asakoshi T, Masitah H, Okanishi T, Matsui T, Eguchi K. 2016. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J Catal. 343:178–184. doi: 10.1016/j.jcat.2016.07.018.
  • Nie W, Zou X, Chen C, Wang X, Ding W, Lu X. 2017. Methanation of carbon dioxide over Ni–Ce–Zr oxides prepared by one-pot hydrolysis of metal nitrates with ammonium carbonate. Catalysts. 7:104. doi: 10.3390/catal7040104.
  • Pratsinis SE. 1998. Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci. 24:197–219. doi: 10.1016/S0360-1285(97)00028-2.
  • Reddy BM, Khan A, Lakshmanan P, Aouine M, Loridant S, Volta J-C. 2005. Structural characterization of nanosized CeO2−SiO2, CeO2−TiO2, and CeO2−ZrO2 catalysts by XRD, Raman, and HREM techniques. J Phys Chem B. 109:3355–3363. doi: 10.1021/jp045193h.
  • Righettoni M, Tricoli A, Pratsinis SE. 2010. Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem Mater. 22:3152–3157. doi: 10.1021/cm1001576.
  • Schulz H, Stark WJ, Maciejewski M, Pratsinis SE, Baiker A. 2003. Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity. J Mater Chem. 13:2979–2984. doi: 10.1039/b307754c.
  • Shan W, Luo M, Ying P, Shen W, Li C. 2003. Reduction property and catalytic activity of Ce1−XNiXO2 mixed oxide catalysts for CH4 oxidation. Appl Catal A Gen. 246:1–9. doi: 10.1016/S0926-860X(02)00659-2.
  • Tada S, Fujiwara K, Yamamura T, Nishijima M, Uchida S, Kikuchi R. 2020. Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chem Eng J. 381:122750. doi: 10.1016/j.cej.2019.122750.
  • Tada S, Ikeda S, Shimoda N, Honma T, Takahashi M, Nariyuki A, Satokawa S. 2017. Sponge Ni catalyst with high activity in CO2 methanation. Int J Hydrogen Energy. 42:30126–30134. doi: 10.1016/j.ijhydene.2017.10.138.
  • Tada S, Nagase H, Fujiwara N, Kikuchi R. 2021. What are the best active sites for CO2 methanation over Ni/CeO2? Energy Fuels. 35:5241–5251. doi: 10.1021/acs.energyfuels.0c04238.
  • Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. 2012. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energy. 37:5527–5531. doi: 10.1016/j.ijhydene.2011.12.122.
  • Tang G, Gong D, Liu H, Wang L. 2019. Highly loaded mesoporous Ni–La2O3 catalyst prepared by colloidal solution combustion method for CO2 methanation. Catalysts. 9:442. doi: 10.3390/catal9050442.
  • Tani T, Mädler L, Pratsinis SE. 2002. Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. J Mater Sci. 37:4627–4632. doi: 10.1023/A:1020660702207.
  • Teoh WY, Amal R, Mädler L. 2010. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale. 2:1324–1347. doi: 10.1039/c0nr00017e.
  • Wang F, Li C, Zhang X, Wei M, Evans DG, Duan X. 2015. Catalytic behavior of supported Ru nanoparticles on the {1 0 0},{1 1 0}, and {1 1 1} facet of CeO2. J Catal. 329:177–186. doi: 10.1016/j.jcat.2015.05.014.
  • Wang S, Lu GM. 1998. Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B Environ. 19:267–277. doi: 10.1016/S0926-3373(98)00081-2.
  • Wegner K, Schimmöller B, Thiebaut B, Fernandez C, Rao TN. 2011. Pilot plants for industrial nanoparticle production by flame spray pyrolysis. KONA. 29:251–265. doi: 10.14356/kona.2011025.
  • Zhou J, Gao Z, Xiang G, Zhai T, Liu Z, Zhao W, Liang X, Wang L. 2022. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nat Commun. 13:327. doi: 10.1038/s41467-021-27910-4.
  • Zyryanova М, Snytnikov P, Gulyaev R, Amosov YI, Boronin A, Sobyanin V. 2014. Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas. Chem Eng J. 238:189–197. doi: 10.1016/j.cej.2013.07.034.