195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of Cone-Shaped Pellets for Catalytic Reactors

ORCID Icon
Article: 2317457 | Received 24 Jan 2024, Accepted 07 Feb 2024, Published online: 23 Feb 2024

References

  • Annamalai J, Liauw MA, Luss D. 1999. Temperature patterns on a hollow cylindrical catalytic pellet. Chaos. 9:36–42. doi: 10.1063/1.166378.
  • Aris R. 1957. On shape factors for irregular particles-I. The steady-state problem. Diffusion and reaction. Chem Eng Sci. 6:262–268. doi: 10.1016/0009-2509(57)85028-3.
  • Burghardt A, Kubaczka A. 1996. Generalization of the effectiveness factor for any shape of a catalyst pellet. Chem Eng Process. 35:65–74. doi: 10.1016/0255-2701(95)04115-X.
  • Cho Y-S. 2023a. Modelling of batch reactors and CSTRs containing core-shell catalytic pellets with various morphologies under non-isothermal condition. J Chem Eng Jpn. 56:217299.
  • Cho Y-S. 2023b. Analytical solutions of reaction–diffusion phenomena by porous cylindrical pellets with finite length. Can J Chem Eng. 101:3431–3461. doi: 10.1002/cjce.24700.
  • Ding L-X, Liang C-L, Xu H, Wang A-L, Tong Y-X, Li G-R. 2014. Porous hollow nanorod arrays composed of alternating Pt and Pd nanocrystals with superior electrocatalytic activity and durability for methanol oxidation. Adv Mater Interf. 1:1400005.
  • Ebner JR, Keppel RA. 1992. Shaped oxidation catalyst structures for the production of maleic anhydride. US Patent 5,168,090, Mosanto Company.
  • Fkiaras NG. 1971. Heat conduction in a cone with a ring source [MS Thesis]. Oregon State University.
  • Hubble R, York APE, Dennis JS. 2019. Modelling reaction and diffusion in a wax-filled hollow cylindrical pellet of Fischer Tropsch catalyst. Chem Eng Sci. 207:958–969. doi: 10.1016/j.ces.2019.06.051.
  • Khan A, Nath BK, Chutia J. 2015. Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell). Energy. 90:1769–1774. doi: 10.1016/j.energy.2015.07.002.
  • Li P, Xiu G, Rodrigues AE. 2019a. Modelling diffusion and reaction for inert-core catalyst in batch and fixed bed reactors. Can J Chem Eng. 97:217–225. doi: 10.1002/cjce.23189.
  • Li P, Yu J, Xiu G, Rodrigues AE. 2011. Perturbation chromatography with inert core adsorbent: moment solution for two-component nonlinear isotherm adsorption. Chem Eng Sci. 66:4555–4560. doi: 10.1016/j.ces.2011.06.016.
  • Li, Z., C. Song, Q. Li, X. Xiang, H. Yang, X. Wang, and J. Gao. 2019b. Hybrid nanostructured antireflection coating by self-assembled nanosphere lithography. Coatings. 9: 453. doi: 10.3390/coatings9070453.
  • Moon P, Spencer DE. 1988. “Conical coordinates (r, θ, λ)." Table 1.09 in field theory handbook, including coordinate systems, differential equations, and their solutions. 2nd ed. New York: Springer-Verlag, p. 37–40.
  • Nigam SC, Maheshwari U, Mathur AK, Kunzru D. 1985. Catalyst deactivation in finite hollow cylindrical pellets. Chem Eng J. 31:39–43. doi: 10.1016/0300-9467(85)85005-X.
  • Noor I, Ahmad F, Alatas H, Irzaman, 2017. Simulation of heat transfer in husk furnace with cone geometry based on conical coordinate system. J Phys Conf Ser. 877: 012025. doi: 10.1088/1742-6596/877/1/012025.
  • Pagis C, Meunier F, Schuurman Y, Tuel A, Dodin M, Martinez-Franco R, Farrusseng D. 2018. Demonstration of improved effectiveness factor of catalysts based on hollow single crystal zeolites. ChemCatChem. 10:4525–4529. doi: 10.1002/cctc.201801225.
  • Qiu Y, Zhao Y, Yang X, Li W, Wei Z, Xiao J, Leung S-F, Lin Q, Wu H, Zhang Y, et al. 2014. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale. 6:3626–3631. doi: 10.1039/c3nr06675d.
  • Rice RG, Do D. 2012. Applied mathematics and modeling for chemical engineers. 2nd ed. Hoboken, NJ: Wiley.
  • Song R, Chi H, Ma Q, Li D, Wang X, Gao W, Wang H, Wang X, Li Z, Li C. 2021. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis. J Am Chem Soc. 143:13664–13674. doi: 10.1021/jacs.1c05008.
  • Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J. 2016. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 1:243–267. doi: 10.1039/c5nh00098j.
  • Tian J, Zhang Q, Uchaker E, Liang Z, Gao R, Qu X, Zhang S, Cao G. 2013. Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J Mater Chem A. 1:6770–6775. doi: 10.1039/c3ta11056g.
  • Vishwakarma NK, Singh AK, Hwang Y-H, Ko D-H, Kim J-O, Babu AG, Kim D-P. 2017. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow. Nature Commun. 8:14676.
  • Wang JB, Varma A. 1978. The effectiveness factors for symmetric porous pellets with step-distribution of catalyst. Chem Eng Sci. 33:1549–1552. doi: 10.1016/0009-2509(78)85207-5.
  • Wang W, Qi L. 2019. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices. Adv Funct Mater. 355:1807275.
  • Zadeh AS, Peters B. 2020. Secondary effectiveness factors for catalytic reactions in series: extension to slab, cylindrical, and spherical geometries. React Chem Eng. 5:2003–2008. doi: 10.1039/D0RE00242A.
  • Zhu H, Li Q. 2013. Visible light-driven CdSe nanotube array photocatalyst. Nanoscale Res Lett. 8:230. doi: 10.1186/1556-276X-8-230.
  • Zhu J, Araya SS, Cui X, Kær SK. 2022. The role of effectiveness factor on the modeling of methanol steam reforming over CuO/ZnO/Al2O3 catalyst in a multi-tubular reactor. Int J Hydrogen Energ. 47:8700–8715. doi: 10.1016/j.ijhydene.2021.12.223.