252
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Breaking Boundaries: Innovations in Two- and Three-Dimensional Metal-Organic Framework (MOF)-Based Mixed-Matrix Membranes for Effective Post-Combustion CO2 Capture

ORCID Icon & ORCID Icon
Article: 2350748 | Received 30 Jan 2024, Accepted 29 Apr 2024, Published online: 15 May 2024

References

  • Akpasi SO, Yusuf MI. 2022. Review of carbon capture and methane production from carbon dioxide. Atmosphere. 13:1958. doi: 10.3390/atmos13121958.
  • Arif A. 2016. Preparation and optimization of a membrane for 3rd generation solvent membrane contactor [Master’s thesis, Norwegian University of Science and Technology]. https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2417602/14556_FULLTEXT.pdf?sequence=1
  • Bae T-H, Long JR. 2013. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ Sci. 6:3565–3569. doi: 10.1039/c3ee42394h.
  • Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C, et al. 2015. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF‐8 for membrane‐based CO2 capture. Angew Chem Int Ed Engl. 54:15483–15487. doi: 10.1002/anie.201505508.
  • Bano S, Tariq SR, Anjum T, Najam M, Usman M, Yasin M, Shafi H, Khan AL. 2022. Development of highly permselective mixed matrix membranes comprising of polyimide and Ln-MOF for CO2 capture. Chemosphere. 307:136051. doi: 10.1016/j.chemosphere.2022.136051.
  • Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RV, Kundu LM, Mandal B. 2024. New generation mixed matrix membrane for CO2 separation: transition from binary to quaternary mixed matrix membrane. Chemosphere. 354:141653. doi: 10.1016/j.chemosphere.2024.141653.
  • Basu S, Cano-Odena A, Vankelecom IF. 2011. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol. 81:31–40. doi: 10.1016/j.seppur.2011.06.037.
  • Benzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, Marrot J, Menguy N, Montero D, Shepard W, Tissot A, et al. 2017. Revisiting the aluminum trimesate-based MOF (MIL-96): from structure determination to the processing of mixed matrix membranes for CO2 capture. Chem Mater. 29:10326–10338. doi: 10.1021/acs.chemmater.7b03203.
  • Carja I-D, Tavares SR, Shekhah O, Ozcan A, Semino R, Kale VS, Eddaoudi M, Maurin G. 2021. Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization. ACS Appl Mater Interfaces. 13:29041–29047. doi: 10.1021/acsami.1c03859.
  • Casado-Coterillo C, Fernández-Barquín A, Zornoza B, Téllez C, Coronas J, Irabien Á. 2015. Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation. RSC Adv. 5:102350–102361. doi: 10.1039/C5RA19331A.
  • Chabanon E, Bounaceur R, Castel C, Rode S, Roizard D, Favre E. 2015. Pushing the limits of intensified CO2 post-combustion capture by gas–liquid absorption through a membrane contactor. Chem Eng Proc. 91:7–22. doi: 10.1016/j.cep.2015.03.002.
  • Cheng J, Yang C, Hou W, Liu N, Xia R, Chen Z, Zhang H, Liu J. 2023. Carbon nanotubes grown on ZIF-L (Zn@Co) surface improved CO2 permeability of mixed matrix membranes. J Membr Sci. 670:121356. doi: 10.1016/j.memsci.2023.121356.
  • Cheng Y, Tavares SR, Doherty CM, Ying Y, Sarnello E, Maurin G, Hill MR, Li T, Zhao D. 2018. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal–organic framework nanosheets for efficient CO2 capture. ACS Appl Mater Interfaces. 10:43095–43103. doi: 10.1021/acsami.8b16386.
  • Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. 2017. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J Membr Sci. 539:213–223. doi: 10.1016/j.memsci.2017.06.011.
  • Chi WS, Sundell BJ, Zhang K, Harrigan DJ, Hayden SC, Smith ZP. 2019. Mixed‐matrix membranes formed from multi‐dimensional metal–organic frameworks for enhanced gas transport and plasticization resistance. ChemSusChem. 12:2355–2360. doi: 10.1002/cssc.201900623.
  • Choi HL, Jeong Y, Lee H, Bae T-H. 2024. High-performance mixed-matrix membranes using a zeolite@MOF core–shell structure synthesized via ion-exchange-induced crystallization and post-synthetic conversion. JACS Au. 4:253–262. doi: 10.1021/jacsau.3c00680.
  • Chuah CY, Goh K, Bae T-H. 2017. Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J Phys Chem C. 121:6748–6755. doi: 10.1021/acs.jpcc.7b00291.
  • Chuah CY, Goh K, Bae T-H. 2021. Enhanced performance of carbon molecular sieve membranes incorporating zeolite nanocrystals for air separation. Membranes. 11:489. doi: 10.3390/membranes11070489.
  • Chuah CY, Goh K, Yang Y, Gong H, Li W, Karahan HE, Guiver MD, Wang R, Bae T-H. 2018. Harnessing filler materials for enhancing biogas separation membranes. Chem Rev. 118:8655–8769. doi: 10.1021/acs.chemrev.8b00091.
  • Chuah CY, Jiang X, Goh K, Wang R. 2021. Recent progress in mixed-matrix membranes for hydrogen separation. Membranes. 11:666. doi: 10.3390/membranes11090666.
  • Chuah CY, Kim K, Lee J, Koh D-Y, Bae T-H. 2019. CO2 absorption using membrane contactors: recent progress and future perspective. Ind Eng Chem Res. 59:6773–6794. doi: 10.1021/acs.iecr.9b05439.
  • Chuah CY, Lee J, Bao Y, Song J, Bae T-H. 2021. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. J Membr Sci. 622:119031. doi: 10.1016/j.memsci.2020.119031.
  • Chuah CY, Lee J, Song J, Bae T-H. 2020. CO2/N2 separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities. Membranes. 10:154. doi: 10.3390/membranes10070154.
  • Chuah CY, Lee Y, Bae T-H. 2021. Potential of adsorbents and membranes for SF6 capture and recovery: a review. Chem Eng J. 404:126577. doi: 10.1016/j.cej.2020.126577.
  • Chuah CY, Li W, Samarasinghe S, Sethunga G, Bae T-H. 2019. Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals. Microporous Mesoporous Mater. 290:109680. doi: 10.1016/j.micromeso.2019.109680.
  • Chuah CY, Li W, Yang Y, Bae T-H. 2020. Evaluation of porous adsorbents for CO2 capture under humid conditions: the importance of recyclability. Chem Eng J Adv. 3:100021. doi: 10.1016/j.ceja.2020.100021.
  • Chuah CY, Samarasinghe SASC, Li W, Goh K, Bae T-H. 2020. Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes. 10:74. doi: 10.3390/membranes10040074.
  • Chuah CY. 2019. Microporous materials with tailored structural properties for enhanced gas separation, school of chemical and biomedical engineering. Singapore: Nanyang Technological University.
  • Chui SS-Y, Lo SM-F, Charmant JP, Orpen AG, Williams ID. 1999. A chemically functionalizable nanoporous material [Cu3 (TMA)2(H2O)3]. Science. 283:1148–1150. doi: 10.1126/science.283.5405.1148.
  • Comesaña-Gándara B, Chen J, Bezzu CG, Carta M, Rose I, Ferrari M-C, Esposito E, Fuoco A, Jansen JC, McKeown NB. 2019. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ Sci. 12:2733–2740. doi: 10.1039/C9EE01384A.
  • Deng J, Dai Z, Hou J, Deng L. 2020. Morphologically tunable MOF nanosheets in mixed matrix membranes for CO2 separation. Chem Mater. 32:4174–4184. doi: 10.1021/acs.chemmater.0c00020.
  • Ding R, Dai Y, Zheng W, Li X, Yan X, Liu Y, Ruan X, Li S, Yang X, Yang K, et al. 2021. Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway. Chem Eng J. 414:128807. doi: 10.1016/j.cej.2021.128807.
  • Du X, Feng S, Luo J, Zhuang Y, Song W, Li X, Wan Y. 2023. Pebax mixed matrix membrane with bimetallic CeZr-MOFs to enhance CO2 separation. Sep Purif Technol. 322:124251. doi: 10.1016/j.seppur.2023.124251.
  • Dutcher B, Fan M, Russell AG. 2015. Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces. 7:2137–2148. doi: 10.1021/am507465f.
  • Fan L, Kang Z, Shen Y, Wang S, Zhao H, Sun H, Hu X, Sun H, Wang R, Sun D. 2018. Mixed matrix membranes based on metal–organic frameworks with tunable pore size for CO2 separation. Cryst Growth Des. 18:4365–4371. doi: 10.1021/acs.cgd.8b00307.
  • Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın A, Hupp JT. 2012. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 134:15016–15021. doi: 10.1021/ja3055639.
  • Feng S, Bu M, Pang J, Fan W, Fan L, Zhao H, Yang G, Guo H, Kong G, Sun H, et al. 2020. Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation. J Membr Sci. 593:117404. doi: 10.1016/j.memsci.2019.117404.
  • Feng X, Qin Z, Lai Q, Zhang Z, Shao Z-W, Tang W, Wu W, Dai Z, Liu C. 2023. Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO2/N2 separation. Sep Purif Technol. 305:122476. doi: 10.1016/j.seppur.2022.122476.
  • Freeman B, Hao P, Baker R, Kniep J, Chen E, Ding J, Zhang Y, Rochelle GT. 2014. Hybrid membrane-absorption CO2 capture process. Energy Proc. 63:605–613. doi: 10.1016/j.egypro.2014.11.065.
  • Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song Q, Doitomi K, Furukawa S, Hirao H, Kusuda H, et al. 2017. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy. 2:1–9. doi: 10.1038/nenergy.2017.86.
  • Gholami M, Van Assche TRC, Denayer JFM. 2023. Temperature vacuum swing, a combined adsorption cycle for carbon capture. Curr Opin Chem Eng. 39:100891. doi: 10.1016/j.coche.2022.100891.
  • Goh SH, Lau HS, Yong WF. 2022. Metal–organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small. 18:e2107536. doi: 10.1002/smll.202107536.
  • Gong H, Chuah CY, Yang Y, Bae T-H. 2018. High performance composite membranes comprising Zn (pyrz)2(SiF6) nanocrystals for CO2/CH4 separation. J Ind Eng Chem. 60:279–285. doi: 10.1016/j.jiec.2017.11.014.
  • Goto K, Okabe H, Shimizu S, Onoda M, Fujioka Y. 2009. Evaluation method of novel absorbents for CO2 capture. Energy Proc. 1:1083–1089. doi: 10.1016/j.egypro.2009.01.143.
  • Guo F, Li D, Ding R, Gao J, Ruan X, Jiang X, He G, Xiao W. 2022. Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation. Sep Purif Technol. 280:119803. doi: 10.1016/j.seppur.2021.119803.
  • Guo F, Xiao W, Ma C, Ruan X, He G, Wang H, Yang Z, Jiang X. 2023. Constructing gas transmission pathways in two-dimensional composite material ZIF-8@ BNNS mixed-matrix membranes to enhance CO2/N2 separation performance. Membranes. 13:444. doi: 10.3390/membranes13040444.
  • Guo X, Qiao Z, Liu D, Zhong C. 2019. Mixed-matrix membranes for CO2 separation: role of the third component. J Mater Chem A. 7:24738–24759. doi: 10.1039/C9TA09012F.
  • Hao L, Li P, Yang T, Chung T-S. 2013. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J Membr Sci. 436:221–231. doi: 10.1016/j.memsci.2013.02.034.
  • Hasan MR, Paseta L, Malankowska M, Téllez C, Coronas J. 2022. Synthesis of ZIF‐94 from recycled mother liquors: study of the influence of its loading on postcombustion CO2 capture with Pebax based mixed matrix membranes. Adv Sustain Syst. 6:2100317.
  • Hassan NS, Jalil AA, Bahari MB, Khusnun NF, Aldeen EMS, Mim RS, Firmansyah ML, Rajendran S, Mukti RR, Andika R, et al. 2023. A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation. Chemosphere. 314:137709. doi: 10.1016/j.chemosphere.2022.137709.
  • Holmes AS, Ryan JM. 1982. Cryogenic distillative separation of acid gases from methane (U.S. Patent No. 4,318,723). U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/a9/13/52/2b3de0b2aeee46/US4318723.pdf
  • Hossain I, Husna A, Chaemchuen S, Verpoort F, Kim T-H. 2020. Cross-linked mixed-matrix membranes using functionalized UiO-66- NH2 into PEG/PPG–PDMS-based rubbery polymer for efficient CO2 separation. ACS Appl Mater Interfaces. 12:57916–57931. doi: 10.1021/acsami.0c18415.
  • Hou W, Cheng J, Hu L, Wu Y, Zhou J. 2023. Mixed matrix membranes based on NbOF52− anion-pillared porous MOFs for efficient CO2 separation. J Membr Sci. 693:122323. doi: 10.1016/j.memsci.2023.122323.
  • Husna A, Hossain I, Choi O, Lee SM, Kim TH. 2021. Efficient CO2 separation using a PIM‐PI‐functionalized UiO‐66 MOF incorporated mixed matrix membrane in a PIM‐PI‐1 polymer. Macromol Mater Eng. 306:2100298.
  • Husna A, Hossain I, Jeong I, Kim T-H. 2022. Mixed matrix membranes for efficient CO2 separation using an engineered UiO-66 MOF in a Pebax polymer. Polymers. 14:655. doi: 10.3390/polym14040655.
  • Jia M, Feng Y, Qiu J, Zhang X-F, Yao J. 2019. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Sep Purif Technol. 213:63–69. doi: 10.1016/j.seppur.2018.12.029.
  • Kamble AR, Patel CM, Murthy ZVP. 2021. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew Sust Energy Rev. 145:111062. doi: 10.1016/j.rser.2021.111062.
  • Kang M, Kim T-H, Han HH, Min HJ, Bae Y-S, Kim JH. 2022. Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67. J Membr Sci. 659:120788. doi: 10.1016/j.memsci.2022.120788.
  • Katare A, Kumar S, Kundu S, Sharma S, Kundu LM, Mandal B. 2023. Mixed matrix membranes for carbon capture and sequestration: challenges and scope. ACS Omega. 8:17511–17522. doi: 10.1021/acsomega.3c01666.
  • Katare A, Mandal B. 2023. Surface engineering of Zr BDC nanoparticles via conjugation with lysine to enhance the CO2/N2 separation performance of chitosan mixed matrix membranes under dry and humid conditions. ACS Appl Nano Mater. 6:4821–4833. doi: 10.1021/acsanm.3c00534.
  • Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES. 2015. Membrane-based carbon capture from flue gas: a review. J Clean Prod. 103:286–300. doi: 10.1016/j.jclepro.2014.10.050.
  • Khdhayyer MR, Esposito E, Fuoco A, Monteleone M, Giorno L, Jansen JC, Attfield MP, Budd PM. 2017. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Sep Purif Technol. 173:304–313. doi: 10.1016/j.seppur.2016.09.036.
  • Kim C, Ha Y, Choi M. 2023. Design of amine-containing nanoporous materials for postcombustion CO2 capture from engineering perspectives. Acc Chem Res. 56:2887–2897. doi: 10.1021/acs.accounts.3c00326.
  • Kitaura R, Seki K, Akiyama G, Kitagawa S. 2003. Porous coordination‐polymer crystals with gated channels specific for supercritical gases. Angew Chem Int Ed Engl. 42:428–431. doi: 10.1002/anie.200390130.
  • Lai Q, Chu Z-Q, Xiao X, Dai D, Song T, Luo T-Y, Tang W, Feng X, Zhang Z, Li T, et al. 2022. Two-dimensional Zr/Hf-hydroxamate metal–organic frameworks. Chem Commun. 58:3601–3604. doi: 10.1039/d2cc00213b.
  • Lee CS, Song E, Park JT, Kim JH. 2021. Ultrathin, highly permeable graphene oxide/zeolitic imidazole framework polymeric mixed-matrix composite membranes: engineering the CO2-philic pathway. ACS Sustain Chem Eng. 9:11903–11915. doi: 10.1021/acssuschemeng.1c03917.
  • Lee TH, Ozcan A, Park I, Fan D, Jang JK, Mileo PG, Yoo SY, Roh JS, Kang JH, Lee BK. 2021. Disclosing the role of defect‐engineered metal–organic frameworks in mixed matrix membranes for efficient CO2 separation: a joint experimental‐computational exploration. Adv Funct Mater. 31:2103973.
  • Lee Y, Chuah CY, Lee J, Bae T-H. 2022. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes. J Membr Sci. 647:120309. doi: 10.1016/j.memsci.2022.120309.
  • Leung DYC, Caramanna G, Maroto-Valer MM. 2014. An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energy Rev. 39:426–443. doi: 10.1016/j.rser.2014.07.093.
  • Li B, Liu J, He X, Wang R, Tao W, Li Z. 2023. Covalent “Bridge-crosslinking” strategy constructs facilitated transport mixed matrix membranes for highly-efficient CO2 separation. J Membr Sci. 680:121755. doi: 10.1016/j.memsci.2023.121755.
  • Li C, Qi A, Ling Y, Tao Y, Zhang Y-B, Li T. 2023. Establishing gas transport highways in MOF-based mixed matrix membranes. Sci Adv. 9:eadf5087. doi: 10.1126/sciadv.adf5087.
  • Li G, Kujawski W, Knozowska K, Kujawa J. 2022. Pebax® 2533/PVDF thin film mixed matrix membranes containing MIL-101 (Fe)/GO composite for CO2 capture. RSC Adv. 12:29124–29136. doi: 10.1039/d2ra05095a.
  • Li G, Kujawski W, Tonkonogovas A, Knozowska K, Kujawa J, Olewnik-Kruszkowska E, Pedišius N, Stankevičius A. 2022. Evaluation of CO2 separation performance with enhanced features of materials – Pebax® 2533 mixed matrix membranes containing ZIF-8-PEI@[P(3)HIm][Tf2N].Chem Eng Res Des. 181:195–208. doi: 10.1016/j.cherd.2022.03.023.
  • Li J-R, Kuppler RJ, Zhou H-C. 2009. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 38:1477–1504. doi: 10.1039/b802426j.
  • Li N, Ma C, Ye M, Guo X, Qiao Z, Zhong C. 2023. Mechanochemical synthesized amino-functionalized ultramicroporous ZIF based mixed-matrix membranes for CO2 separation. J Membr Sci. 680:121733. doi: 10.1016/j.memsci.2023.121733.
  • Li R, Yang Y, Zhang Z, Lian S, Song C. 2024. Imine-linked polymer derived N-doped microporous carbons in PEO-based mixed matrix membranes for enhanced CO2/N2 separation: a comparative study. J Membr Sci. 690:122203. doi: 10.1016/j.memsci.2023.122203.
  • Li T, Pan Y, Peinemann K-V, Lai Z. 2013. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci. 425–426:235–242. doi: 10.1016/j.memsci.2012.09.006.
  • Li W, Chuah CY, Kwon S, Goh K, Wang R, Na K, Bae T-H. 2020. Nanosizing zeolite 5A fillers in mixed-matrix carbon molecular sieve membranes to improve gas separation performance. Chem Eng J Adv. 2:100016. doi: 10.1016/j.ceja.2020.100016.
  • Li W, Chuah CY, Yang Y, Bae T-H. 2018. Nanocomposites formed by in situ growth of NiDOBDC nanoparticles on graphene oxide sheets for enhanced CO2 and H2 storage. Microporous Mesoporous Mater. 265:35–42. doi: 10.1016/j.micromeso.2018.01.036.
  • Li W, Goh K, Chuah CY, Bae T-H. 2019. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: a simple approach towards high CO2 permeability enhancements. J Membr Sci. 588:117220. doi: 10.1016/j.memsci.2019.117220.
  • Li W, Samarasinghe SASC, Bae T-H. 2018. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J Ind Eng Chem. 67:156–163. doi: 10.1016/j.jiec.2018.06.026.
  • Li Y, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Wang S, He G, Pan F, Jiang Z. 2014. Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ Sci. 7:1489–1499. doi: 10.1039/c3ee43163k.
  • Lin M, Zhang Y, Yan G, Yu P, Duan S, Chen H, Han J. 2023. Design and analysis of cryogenic CO2 separation from a CO2‐rich mixture. Energy Sci Eng. 11:2253–2266. doi: 10.1002/ese3.1448.
  • Lin Z, Yuan Z, Wang K, He X. 2023. Synergistic tuning mixed matrix membranes by Ag+-doping in UiO-66-NH2/polymers of intrinsic microporosity for remarkable CO2/N2 separation. J Membr Sci. 681:121775. doi: 10.1016/j.memsci.2023.121775.
  • Liu N, Cheng J, Hou W, Yang C, Yang X, Zhou J. 2022. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes. Sep Purif Technol. 282:120007. doi: 10.1016/j.seppur.2021.120007.
  • Loloei M, Kaliaguine S, Rodrigue D. 2021. Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: effect of the processing route on improving MOF–polymer interfacial interaction. Sep Purif Technol. 270:118786. doi: 10.1016/j.seppur.2021.118786.
  • Luis P, Van Gerven T, Van der Bruggen B. 2012. Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci. 38:419–448. doi: 10.1016/j.pecs.2012.01.004.
  • Ma Y, He X, Tang S, Xu S, Qian Y, Zeng L, Tang K. 2022. Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation. J Environ Chem Eng. 10:107274. doi: 10.1016/j.jece.2022.107274.
  • Ma Y, He X, Xu S, Yu Y, Zhang C, Meng J, Zeng L, Tang K. 2022. Enhanced 2-D MOFs nanosheets/PES-g-PEG mixed matrix membrane for efficient CO2 separation. Chem Eng Res Des. 180:79–89. doi: 10.1016/j.cherd.2022.02.017.
  • Madejski P, Chmiel K, Subramanian N, Kuś T. 2022. Methods and techniques for CO2 capture: review of potential solutions and applications in modern energy technologies. Energies. 15:887. doi: 10.3390/en15030887.
  • Maleh MS, Raisi A. 2023. Heteroepitaxial growth of ZIF-67 nanoparticles on the ZIF-L (Zn) nanosheets for fabrication of Pebax mixed matrix membranes with highly efficient CO2 separation. Chemosphere. 344:140249. doi: 10.1016/j.chemosphere.2023.140249.
  • Mason JA, McDonald TM, Bae T-H, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR. 2015. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J Am Chem Soc. 137:4787–4803. doi: 10.1021/jacs.5b00838.
  • Masson-Delmotte V. 2022. Global warming of 1.5 °C: an IPCC special report on impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge: Cambridge University Press.
  • Miltner M, Makaruk A, Harasek M. 2017. Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod. 161:1329–1337. doi: 10.1016/j.jclepro.2017.06.045.
  • Molavi H, Shojaei A. 2019. Mixed-matrix composite membranes based on UiO-66-derived MOFs for CO2 separation. ACS Appl Mater Interfaces. 11:9448–9461. doi: 10.1021/acsami.8b20869.
  • Nafisi V, Hägg M-B. 2014. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membr Sci. 459:244–255. doi: 10.1016/j.memsci.2014.02.002.
  • Nastaj JF, Ambrożek B, Rudnicka J. 2006. Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams. Int Commun Heat Mass Transf. 33:80–86. doi: 10.1016/j.icheatmasstransfer.2005.08.005.
  • Nguyen TH, Gong H, Lee SS, Bae TH. 2016. Amine‐appended hierarchical Ca‐A zeolite for enhancing CO2/CH4 selectivity of mixed‐matrix membranes. Chemphyschem. 17:3165–3169. doi: 10.1002/cphc.201600561.
  • Nie L, Chuah CY, Bae TH, Lee JM. 2021. Graphene‐based advanced membrane applications in organic solvent nanofiltration. Adv Funct Mater. 31:2006949.
  • Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM. 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A. 103:10186–10191. doi: 10.1073/pnas.0602439103.
  • Park Y-J, Lee H, Choi HL, Tapia MC, Chuah CY, Bae T-H. 2023. Mixed-dimensional nanocomposites based on 2D materials for hydrogen storage and CO2 capture. NPJ 2D Mater Appl. 7:61.
  • Pires J, Martins F, Alvim-Ferraz M, Simões M. 2011. Recent developments on carbon capture and storage: an overview. Chem Eng Res Des. 89:1446–1460. doi: 10.1016/j.cherd.2011.01.028.
  • Prasetya N, Donose BC, Ladewig BP. 2018. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J Mater Chem A. 6:16390–16402. doi: 10.1039/C8TA03553A.
  • Pu Y, Yang Z, Wee V, Wu Z, Jiang Z, Zhao D. 2022. Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. J Membr Sci. 641:119912. doi: 10.1016/j.memsci.2021.119912.
  • Qin Z, Feng X, Yin D, Xin B, Jin Z, Deng Y, Yang L, Yao L, Jiang W, Liu C, et al. 2023. Impact of humidity on the CO2/N2 separation performance of Pebax-MOF mixed matrix membranes. Ind Eng Chem Res. 62:14034–14046. doi: 10.1021/acs.iecr.3c02308.
  • Robeson LM. 2008. The upper bound revisited. J Membr Sci. 320:390–400. doi: 10.1016/j.memsci.2008.04.030.
  • Rochelle GT. 2009. Amine scrubbing for CO2 capture. Science. 325:1652–1654. doi: 10.1126/science.1176731.
  • Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés I, Xamena FX, Gascon J. 2015. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater. 14:48–55. doi: 10.1038/nmat4113.
  • Rodrigues MA, de Souza Ribeiro J, de Souza Costa E, de Miranda JL, Ferraz HC. 2018. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep Purif Technol. 192:491–500. doi: 10.1016/j.seppur.2017.10.024.
  • Ryan J, Schaffert F. 1984. The Ryan/Holmes technology an economical route for CO2 and liquids recovery. Chem Eng Prog. 80:53–56.
  • Sabetghadam A, Liu X, Gottmer S, Chu L, Gascon J, Kapteijn F. 2019. Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactive™ for CO2 capture. J Membr Sci. 570–571:226–235. doi: 10.1016/j.memsci.2018.10.047.
  • Samarasinghe S, Chuah CY, Yang Y, Bae T-H. 2018. Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. J Membr Sci. 557:30–37. doi: 10.1016/j.memsci.2018.04.025.
  • Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. 2016. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci. 513:155–165. doi: 10.1016/j.memsci.2016.04.045.
  • Shen M, Tong L, Yin S, Liu C, Wang L, Feng W, Ding Y. 2022. Cryogenic technology progress for CO2 capture under carbon neutrality goals: a review. Sep Purif Technol. 299:121734. doi: 10.1016/j.seppur.2022.121734.
  • Stylianou KC, Queen WL. 2015. Recent advances in carbon capture with metal–organic frameworks. Chimia. 69:274–283. doi: 10.2533/chimia.2015.274.
  • Su NC, Sun DT, Beavers CM, Britt DK, Queen WL, Urban JJ. 2016. Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes. Energy Environ Sci. 9:922–931. doi: 10.1039/C5EE02660A.
  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR. 2012. Carbon dioxide capture in metal–organic frameworks. Chem Rev. 112:724–781. doi: 10.1021/cr2003272.
  • Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. 2022. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Membr Sci. 661:120928. doi: 10.1016/j.memsci.2022.120928.
  • Tanvidkar P, Appari S, Kuncharam BVR. 2022. A review of techniques to improve performance of metal organic framework (MOF) based mixed matrix membranes for CO2/CH4 separation. Rev Environ Sci Biotechnol. 21:539–569. doi: 10.1007/s11157-022-09612-5.
  • Wang C, Wu J, Cheng P, Xu L, Zhang S. 2023. Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture. J Membr Sci. 685:121950. doi: 10.1016/j.memsci.2023.121950.
  • Wang D, Ying Y, Zheng Y, Pu Y, Yang Z, Zhao D. 2022. Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation. J Membr Sci Lett. 2:100017. doi: 10.1016/j.memlet.2022.100017.
  • Wang J, Xu Y, Qu H, Ma H, Chang R, Ma J. 2021. A highly permeable mixed matrix membrane containing a vertically aligned metal–organic framework for CO2 separation. ACS Appl Mater Interfaces. 13:50441–50450. doi: 10.1021/acsami.1c16085.
  • Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, et al. 2016. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci. 9:1863–1890. doi: 10.1039/C6EE00811A.
  • Wang Z, Tian Y, Fang W, Shrestha BB, Huang M, Jin J. 2021. Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation. ACS Appl Mater Interfaces. 13:3166–3174. doi: 10.1021/acsami.0c19554.
  • Yang Y, Chuah CY, Bae T-H. 2019. Polyamine-appended porous organic polymers for efficient post-combustion CO2 capture. Chem Eng J. 358:1227–1234. doi: 10.1016/j.cej.2018.10.122.
  • Yang Y, Chuah CY, Bae T-H. 2021. Polyamine-appended porous organic copolymers with controlled structural properties for enhanced CO2 capture. ACS Sustain Chem Eng. 9:2017–2026. doi: 10.1021/acssuschemeng.0c06280.
  • Yang Y, Chuah CY, Gong H, Bae T-H. 2017. Robust microporous organic copolymers containing triphenylamine for high pressure CO2 capture application. J CO2 Util. 19:214–220. doi: 10.1016/j.jcou.2017.03.020.
  • Yang Y, Goh K, Wang R, Bae T-H. 2017. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem Commun. 53:4254–4257. doi: 10.1039/C7CC00295E.
  • Yang Z, Wu Z, Peh SB, Ying Y, Yang H, Zhao D. 2023. Mixed-matrix membranes containing porous materials for gas separation: from metal–organic frameworks to discrete molecular cages. Engineering. 23:40–55. doi: 10.1016/j.eng.2022.07.022.
  • Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. 2022. Poly(ionic liquid)-functionalized UiO-66-(OH)2: improved interfacial compatibility and separation ability in mixed matrix membranes for CO2 separation. Ind Eng Chem Res. 61:7626–7633. doi: 10.1021/acs.iecr.1c04648.
  • Yin H, Alkaş A, Zhang Y, Zhang Y, Telfer SG. 2020. Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation. J Membr Sci. 609:118245. doi: 10.1016/j.memsci.2020.118245.
  • Ying Y, Cheng Y, Peh SB, Liu G, Shah BB, Zhai L, Zhao D. 2019. Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers. J Membr Sci. 582:103–110. doi: 10.1016/j.memsci.2019.03.088.
  • Yousef AM, El-Maghlany WM, Eldrainy YA, Attia A. 2018. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy. 156:328–351. doi: 10.1016/j.energy.2018.05.106.
  • Yuan J, Zhu H, Sun J, Mao Y, Liu G, Jin W. 2017. Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture. ACS Appl Mater Interfaces. 9:38575–38583. doi: 10.1021/acsami.7b12507.
  • Zhang J, Nwani O, Tan Y, Agar DW. 2011. Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction. Chem Eng Res Des. 89:1190–1196. doi: 10.1016/j.cherd.2011.02.005.
  • Zhao M, Guo J, Xin Q, Zhang Y, Li X, Ding X, Zhang L, Zhao L, Ye H, Li H, et al. 2023. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Sep Purif Technol. 324:124512. doi: 10.1016/j.seppur.2023.124512.
  • Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, et al. 2015. Ultrathin 2D metal–organic framework nanosheets. Adv Mater. 27:7372–7378. doi: 10.1002/adma.201503648.
  • Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. 2023. Fabricating leaf-like hierarchical ZIF-67 as intra-mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol. 305:122460. doi: 10.1016/j.seppur.2022.122460.
  • Zhao S, Cao X, Ma Z, Wang Z, Qiao Z, Wang J, Wang S. 2015. Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal–organic frameworks. Ind Eng Chem Res. 54:5139–5148. doi: 10.1021/ie504786x.