760
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Air entrapment modelling during pipe filling based on SWMM

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 39-57 | Received 16 May 2023, Accepted 07 Jan 2024, Published online: 16 Feb 2024

References

  • Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209–248. https://doi.org/10.1017/S0022112068000133
  • Binder, R. C. (1955). Fluid mechanics. Prentice-Hall.
  • Cabrera-Bejar, J. A., & Tzatchkov, V. G. (2009, May). Inexpensive modeling of intermittent service water distribution networks. World Environmental and Water Resources Congress 2009: Great Rivers in Kansas City, Missouri.
  • Campisano, A., Gullotta, A., & Modica, C. (2019). Using EPA-SWMM to simulate intermittent water distribution systems. Urban Water Journal, 15(10), 925–933. https://doi.org/10.1080/1573062X.2019.1597379
  • Charalambous, B., & Laspidou, C. (2017). Dealing with the complex interrelation of intermittent supply and water losses, IWA Publishing. 25.
  • Christodoulou, S., & Agathokleous, A. (2012). A study on the effects of intermittent water supply on the vulnerability of urban water distribution networks. Water Supply, 12(4), 523–530. https://doi.org/10.2166/ws.2012.025
  • Davies, R. M., & Taylor, G. I. (1950). The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 200(1062), 375–390. https://doi.org/10.1098/rspa.1950.0023
  • Dumitrescu, D. T. (1943). Strömung an einer Luftblase im senkrechten Rohr. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 23(3), 139–149. https://doi.org/10.1002/zamm.19430230303
  • Erickson, J. J., Nelson, K. L., & Meyer, D. D. J. (2022). Does intermittent supply result in hydraulic transients? Mixed evidence from two systems. Journal of Water Supply: Research and Technology-Aqua, 71(11), 1251–1262. https://doi.org/10.2166/aqua.2022.206
  • Escarameia, M. (2004). Experimental and numerical studies on movement of air in water pipelines. HR Wallingford. Report: SR 661.
  • Escarameia, M. (2007). Investigating hydraulic removal of air from water pipelines. Proceedings of the Institution of Civil Engineers, 160(WM1), 25–34. https://doi.org/10.1680/wama.2007.160.1.25
  • Ferreira, J. P. B. C. C., Martins Nuno, M. C., & Covas Dídia, I. C. (2018). Ball valve behavior under steady and unsteady conditions. Journal of Hydraulic Engineering, 144(4), 04018005. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001434
  • Ferreira, J. P., Buttarazzi, N., Ferras, D., & Covas, D. I. C. (2021). Effect of an entrapped air pocket on hydraulic transients in pressurized pipes. Journal of Hydraulic Research, 59(6), 1018–1030. https://doi.org/10.1080/00221686.2020.1862323
  • Ferreira, J. P., Ferras, D., Covas, D. I. C., & Kapelan, Z. (2022, July 18–22). Modelling of air pocket entrapment during pipe filling in intermittent water supply systems. 2nd International Joint Conference on Water Distribution Systems Analysis & Computing and Control in the Water Industry (WDSA/CCWI) in Valencia, Spain.
  • Ferreira, J. P., Ferras, D., Covas, D. I. C., & Kapelan, Z. (2023). Improved SWMM modeling for rapid pipe filling incorporating air behavior in intermittent water supply systems. Journal of Hydraulic Engineering, 149(4), 04023004. https://doi.org/10.1061/JHEND8.HYENG-13137
  • Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299–311. https://doi.org/10.1080/1573062X.2019.1669188
  • Gandenberger, W. (1957). Über die wirtschaftliche und betriebssichere Gestaltung von Fernwasserleitungen, Oldenbourg, München. In German.
  • Goldring, B. T. (1979). The use of small-scale siphon models. Proceedings of the Institution of Civil Engineers, 67(4), 929–942. https://doi.org/10.1680/iicep.1979.2782
  • Guizani, M., Vasconcelos, J., Wright, S. J., & Maalel, K. (2006). Investigation of rapid filling of empty pipes. Journal of Water Management Modeling, R225-20, 463–482. https://doi.org/10.14796/JWMM.R225-20
  • Gullotta, A., Butler, D., Campisano, A., Creaco, E., Farmani, R., & Modica, C. (2021). Optimal location of valves to improve equity in intermittent water distribution systems. Journal of Water Resources Planning and Management, 147(5), 04021016. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001370
  • Idel'čik, I. E., & Steinberg, M. O. (2005). Handbook of Hydraulic Resistance. Jaico Publishing House.
  • Kalinske, A. A., & Bliss, P. H. (1943). Removal of air from pipelines by flowing water. Civil Engineering, ASCE, 13(10), 480–482.
  • Kaur, K., Laanearu, J., & Annus, I. (2023). Air pocket dynamics under bridging of stratified flow during rapid filling of a horizontal pipe. Journal of Hydraulic Engineering, 149(1), 04022030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0002021
  • Kent, J. C. (1952). The entrainment of air by water flowing in circular conduits with downgrade slopes [PhD Thesis]. University of California.
  • Liou, C. P., & Hunt, W. A. (1996). Filling of pipelines with undulating elevation profiles. Journal of Hydraulic Engineering, 122(10), 534–539. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(534)
  • Martin, C. S. (1976, September 22–24). Entrapped air in pipelines. Second International Conference on Pressure Surges in London, England.
  • Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506–519. https://doi.org/10.1080/00221686.2016.1275046
  • Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678–686. https://doi.org/10.1080/00221686.2015.1077353
  • Mortensen, J. D., Barfuss, S. L., & Johnson, M. C. (2011). Scale effects of air entrained by hydraulic jumps within closed conduits. Journal of Hydraulic Research, 49(1), 90–95. https://doi.org/10.1080/00221686.2010.536695
  • Pachaly, R., Vasconcelos, J., Allasia, D., & Minetto, B. (2019). Field evaluation of discretized model setups for the storm water management model. Journal of Water Management Modeling, 27, C463. https://doi.org/10.14796/JWMM.C463
  • Pachaly, R. L., Vasconcelos, J. G., Allasia, D. G., & Bocchi, J. P. P. (2021). Evaluating SWMM capabilities to simulate closed pipe transients. Journal of Hydraulic Research, 60(1), 1–8. https://doi.org/10.1080/00221686.2020.1866695
  • Pothof, I., & Clemens, F. (2010). On elongated air pockets in downward sloping pipes. Journal of Hydraulic Research, 48(4), 499–503. https://doi.org/10.1080/00221686.2010.491651
  • Pozos, O., Giesecke, J., Marx, W., Rodal, E. A., & Sanchez, A. (2010). Experimental investigation of air pockets in pumping pipeline systems. Journal of Hydraulic Research, 48(2), 269–273. https://doi.org/10.1080/00221681003726262
  • Rabben, S. L., Els, H., & Rouve, G. (1983, September 5–9). Investigation on flow aeration at offsets downstream of high-head control structures. 20th IAHR Congress in Moscow, USSR.
  • Rajaratnam, N. (1967). Advances in hydroscience. In V. T. Chow (Ed.), (pp. 197–280). Elsevier.
  • Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging effective air management in water pipelines: A critical review. Journal of Water Resources Planning and Management, 142(12), 04016055. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000695
  • Roesner, L. A., Aldrich, J. A., Dickinson, R. E., & Barnwell, T. O. (1988). Storm water management model user’s manual, Version 4: EXTRAN Addendum. Report: EPA/600/3-88/00 lb.
  • Rossman, L. A. (2017). Storm water management model reference manual volume II – hydraulics. EPA – United States Environmental Protection Agency. Report: EPA/600/R-17/111.
  • Schulz, H. E., Vasconcelos, J. G., & Patrick, A. C. (2020). Air entrainment in pipe-filling bores and pressurization interfaces. Journal of Hydraulic Engineering, 146(2), 04019053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001672
  • USACE. (1980). Engineering and design: Hydraulic design of reservoir out-let works. Engineering Manual. USACE, Report: EM 1110-2-1602.
  • Vasconcelos, J., Eldayih, Y., Zhao, Y., & Jamily, J. A. (2018). Evaluating storm water management model accuracy in conditions of mixed flows. Journal of Water Management Modeling, 27, C451, 1–10. https://doi.org/10.14796/JWMM.C451
  • Vasconcelos, J. G., & Leite, G. M. (2012). Pressure surges following sudden air pocket entrapment in storm-water tunnels. Journal of Hydraulic Engineering, 138(12), 1081–1089. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000616
  • Walski, T. M., Barnhart, T. S., Driscoll, J. M., & Yencha, R. M. (1994). Hydraulics of corrosive Gas pockets in force mains. Water Environment Research, 66(6), 772–778. https://doi.org/10.2175/WER.66.6.2
  • Wisner, P., Mohsen, F., & Kouwen, N. (1975). Removal of air from water lines by hydraulic means. Journal of the Hydraulics Division, 101(HY2), 243–257. https://doi.org/10.1061/JYCEAJ.0004201
  • Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient flow in a rapidly filling horizontal pipe containing trapped air. Journal of Hydraulic Engineering, 128(6), 625–634. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(625)