94
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Analysing tsunami generation through rapid accelerated sea-floor rise: a theoretical and numerical investigation based on Boussinesq-type model

ORCID Icon, ORCID Icon &
Pages 73-85 | Received 29 Aug 2023, Accepted 07 Jan 2024, Published online: 29 Feb 2024

References

  • Baba, T., Allgeyer, S., Hossen, J., Cummins, P. R., Tsushima, H., Imai, K., Yamashita, K., & Kato, T. (2017). Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Modelling, 111, 46–54. https://doi.org/10.1016/j.ocemod.2017.01.002
  • Bashforth, F., & Adams, J. C. (1883). An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid. Cambridge University Press.
  • Castro-Orgaz, O., & Cantero-Chinchilla, F. N. (2020). Non-linear shallow water flow modelling over topography with depth-averaged potential equations. Environmental Fluid Mechanics, 20(2), 261–291. https://doi.org/10.1007/s10652-019-09691-z
  • Castro-Orgaz, O., Cantero-Chinchilla, F. N., & Chanson, H. (2022). Shallow fluid flow over an obstacle: Higher-order non-hydrostatic modeling and breaking waves. Environmental Fluid Mechanics, 22(4), 971–1003. https://doi.org/10.1007/s10652-022-09875-0
  • Clamond, D., Dutykh, D., & Mitsotakis, D. (2017). Conservative modified Serre–Green–Naghdi equations with improved dispersion characteristics. Communications in Nonlinear Science and Numerical Simulation, 45, 245–257. https://doi.org/10.1016/j.cnsns.2016.10.009
  • Dutykh, D., & Dias, F. (2009). Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers in Simulation, 80(4), 837–848. https://doi.org/10.1016/j.matcom.2009.08.036
  • Dutykh, D., Dias, F., & Kervella, Y. (2006). Linear theory of wave generation by a moving bottom. Comptes Rendus Mathematique, 343(7), 499–504. https://doi.org/10.1016/j.crma.2006.09.016
  • Fuentes, M., Uribe, F., Riquelme, S., & Campos, J. (2021). Analytical model for tsunami propagation including source kinematics. Pure and Applied Geophysics, 178(12), 5001–5015. https://doi.org/10.1007/s00024-020-02528-7
  • Fuhrman, D. R., & Madsen, P. A. (2009). Tsunami generation, propagation and run-up with a high-order Boussinesq model. Coastal Engineering, 56(7), 747–758. https://doi.org/10.1016/j.coastaleng.2009.02.004
  • Gylfadóttir, S. S., Kim, J., Helgason, J. K., Brynjólfsson, S., Höskuldsson, A., Jóhannesson, T., Harbitz, C. B., & Løvholt, F. (2017). The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data. Journal of Geophysical Research: Oceans, 122(5), 4110–4122. https://doi.org/10.1002/2016JC012496
  • Hammack, J. L. (1973). A note on tsunamis: Their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60(4), 769–799. https://doi.org/10.1017/S0022112073000479
  • Hayir, A. (2004). Ocean depth effects on tsunami amplitudes used in source models in linearized shallow-water wave theory. Ocean Engineering, 31(3–4), 353–361. https://doi.org/10.1016/j.oceaneng.2003.07.005
  • Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009
  • Le Gal, M., Violeau, D., Ata, R., & Wang, X. (2018). Shallow water numerical models for the 1947 Gisborne and 2011 Tohoku-Oki tsunamis with kinematic seismic generation. Coastal Engineering, 139, 1–15. https://doi.org/10.1016/j.coastaleng.2018.04.022
  • Le Gal, M., Violeau, D., & Benoit, M. (2017). Influence of timescales on the generation of seismic tsunamis. European Journal of Mechanics – B/Fluids, 65, 257–273. https://doi.org/10.1016/j.euromechflu.2017.03.008
  • Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19(1), 59–98. https://doi.org/10.1016/0045-7825(79)90034-3
  • Liu, C.-M. (2020). Analytical solutions of tsunamis generated by underwater earthquakes. Wave Motion (North-Holland Publishing Company), 93, 102489. https://doi.org/10.1016/j.wavemoti.2019.102489
  • Lo, H.-Y., & Liu, P. L.-F. (2023). A simplified approach for efficiently simulating submarine slump generated tsunamis. Coastal Engineering, 184, 104343. https://doi.org/10.1016/j.coastaleng.2023.104343
  • Madsen, P. A., Fuhrman, D. R., & Wang, B. (2006). A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coastal Engineering, 53(5–6), 487–504. https://doi.org/10.1016/j.coastaleng.2005.11.002
  • Peregrine, H. (1972). Equations for water waves and the approximations behind them. In R. E. Meyer (Ed.), Waves on beaches and resulting sediment transport (pp. 95–121). Academic Press.
  • Rashidi, A., Dutykh, D., & Shomali, Z. H. (2020). Horizontal displacement effect in tsunami wave generation in the western MAKRAN region. Journal of Ocean Engineering and Marine Energy, 6(4), 427–439. https://doi.org/10.1007/s40722-020-00182-8
  • Saito, T. (2013). Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory. Earth, Planets and Space, 65(12), 1411–1423. https://doi.org/10.5047/eps.2013.07.004
  • Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877–888. https://doi.org/10.1111/j.1365-246X.2009.04206.x
  • Schäffer, H. A., & Madsen, P. A. (1995). Further enhancements of Boussinesq-type equations. Coastal Engineering, 26(1–2), 1–14. https://doi.org/10.1016/0378-3839(95)00017-2
  • Schäffer, H. A., Madsen, P. A., & Deigaard, R. (1993). A Boussinesq model for waves breaking in shallow water. Coastal Engineering, 20(3–4), 185–202. https://doi.org/10.1016/0378-3839(93)90001-O
  • Shirai, H., Hosoda, T., & Kobayashi, D. (2015). Fundamental study on the effect of the time-dependent bottom deformation on water waves based on Boussinesq equation. Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics), 71(2), I_731–I_738 (in Japanese). https://doi.org/10.2208/jscejam.71.I_731
  • Shirai, H., Onda, S., & Hosoda, T. (2023). Boussinesq models with moving boundaries and their applicability to waves generated by lateral oscillation and bottom deformation. Journal of Hydraulic Engineering, 149(8), 04023023. https://doi.org/10.1061/JHEND8.HYENG-13399
  • Sumer, B. M. (2014). Flow–structure–seabed interactions in coastal and marine environments. Journal of Hydraulic Research, 52(1), 1–13. https://doi.org/10.1080/00221686.2014.881927
  • Todorovska, M. I., & Trifunac, M. D. (2001). Generation of tsunamis by a slowly spreading uplift of the sea floor. Soil Dynamics and Earthquake Engineering, 21(2), 151–167. https://doi.org/10.1016/S0267-7261(00)00096-8
  • Tonelli, M., & Petti, M. (2009). Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations. Coastal Engineering, 56(5–6), 609–620. https://doi.org/10.1016/j.coastaleng.2009.01.001
  • Villeneuve, M., & Savage, S. B. (1993). Nonlinear, dispersive, shallow-water waves developed by a moving bed. Journal of Hydraulic Research, 31(2), 249–266. https://doi.org/10.1080/00221689309498848
  • Wang, X., & Liu, P. L.-F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154. https://doi.org/10.1080/00221686.2006.9521671
  • Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106(6), 11201–11215. https://doi.org/10.1029/2000JB900450
  • Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 3(5), 391–402. https://doi.org/10.5194/nhess-3-391-2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.