99
Views
0
CrossRef citations to date
0
Altmetric
Research papers

Experimental and numerical simulations of river-crossing pipelines for different water fill patterns

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 208-222 | Received 13 Jun 2023, Accepted 13 Mar 2024, Published online: 10 May 2024

References

  • Ali, S. Z., & Dey, S. (2016). Entry flow in curved pipes: Turbulent boundary layer approach. Journal of Hydraulic Research, 54(1), 90–101. https://doi.org/10.1080/00221686.2015.1086831
  • American Water Works Association (Ed.). (2008). Concrete pressure pipe: M9 (Vol. 9). American Water Works Association.
  • Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. F. (2016). Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines. Water, 8(1), 25. https://doi.org/10.3390/w8010025
  • Bo, Q., Cheng, W., & Sun, T. (2022). Flow capacity and ice cap stability of river channel in the Daqing River Basin of the South-to-North water diversion project during the ice period. Alexandria Engineering Journal, 61(5), 3657–3663. https://doi.org/10.1016/j.aej.2021.08.061
  • Cetin, M. (2019). An experimental investigation on air pocket entrapments caused by shear-flow instabilities in rapid-filling pipes. Auburn University, America.
  • Chadwick, A., Morfett, J., & Borthwick, M. (2013). Hydraulics in civil and environmental engineering. CRC Press.
  • Dong, X. R., Wang, Y. Q., Chen, X. P., Dong, Y., Zhang, Y. N., & Liu, C. (2018). Determination of epsilon for Omega vortex identification method. Journal of Hydrodynamics, 30, 541–548. https://doi.org/10.1007/s42241-018-0066-x
  • Eldayih, Y. (2018). Gravity current and air pocket entrapments caused by shear-flow instabilities in rapid-filling pipes. Auburn University, America.
  • Eldayih, Y., Cetin, M., & Vasconcelos, J. G. (2020). Air-pocket entrapment caused by shear flow instabilities in rapid-filling pipes. Journal of Hydraulic Engineering, 146(4), 04020016. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001711
  • Faúndez, M., Alcayaga, H., Walters, J., Pizarro, A., & Soto, M. (2022). Sustainability of water transfer projects: A systematic review. Science of The Total Environment, 860, 160500. https://doi.org/10.1016/j.scitotenv.2022.160500
  • Ferreira, J. P., Ferras, D., Covas, D. I., & Kapelan, Z. (2023). Improved SWMM modeling for rapid pipe filling incorporating air behavior in intermittent water supply systems. Journal of Hydraulic Engineering, 149(4), 04023004. https://doi.org/10.1061/JHEND8.HYENG-13137
  • Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review. Urban Water Journal, 16(4), 299–311. https://doi.org/10.1080/1573062X.2019.1669188
  • Hao, A., Zhang, Y., Zhang, E., Li, Z., Yu, J., Huang, W., Yang, J. F., & Wang, Y. (2018). Groundwater resources and related environmental issues in China. Hydrogeology Journal, 26(5), 1325–1337. https://doi.org/10.1007/s10040-018-1787-1
  • Hatcher, T. M., & Vasconcelos, J. G. (2017). Peak pressure surges and pressure damping following sudden air pocket compression. Journal of Hydraulic Engineering, 143(4), 04016094. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001251
  • Hewitt, G. F. (1978). Measurement of two phase flow parameters. Nasa Sti/recon Technical Report A, 79, 47262. https://doi.org/10.1016/0017-9310(80)90078-2
  • Hou, Q., Tijsseling, A. S., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Anderson, A., & van’t Westende, J. M. (2014). Experimental investigation on rapid filling of a large-scale pipeline. Journal of Hydraulic Engineering, 140(11), 04014053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000914
  • Huang, B., & Zhu, D. Z. (2020). Linearized solution for rapid filling of horizontal pipe with entrapped air. Journal of Engineering Mechanics, 146(11), 06020006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001858
  • Huang, B., & Zhu, D. Z. (2021). Rigid-column model for rapid filling in a partially filled horizontal pipe. Journal of Hydraulic Engineering, 147(2), 06020018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001849
  • Hufnagel, L., Canton, J., Örlü, R., Marin, O., Merzari, E., & Schlatter, P. (2018). The three-dimensional structure of swirl-switching in bent pipe flow. Journal of Fluid Mechanics, 835, 86–101. https://doi.org/10.1017/jfm.2017.749
  • Kang, Y., Cheng, Y. G., & Zhang, X. X. (2016). Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis. Journal of Hydrodynamics, Series B, 28(4), 564–575. https://doi.org/10.1016/S1001-6058(16)60660-1
  • Kühnen, J., Braunshier, P., Schwegel, M., Kuhlmann, H. C., & Hof, B. (2015). Subcritical versus supercritical transition to turbulence in curved pipes. Journal of Fluid Mechanics, 770, R3. https://doi.org/10.1017/jfm.2015.184
  • Liu, C., Wang, Y., Yang, Y., & Duan, Z. (2016). New omega vortex identification method. Science China Physics Mechanics & Astronomy, 59, 1–9. https://doi.org/10.1007/s11433-016-0022-6
  • Liu, J., Zhang, J., & Yu, X. (2018). Analytical and numerical investigation on the dynamic characteristics of entrapped air in a rapid filling pipe. Journal of Water Supply: Research and Technology—AQUA, 67(2), 137–146. https://doi.org/10.2166/aqua.2018.153
  • Liu, S., Zhang, X., Xu, Z., Zhao, J., & Dong, B. (2023). Experimental study on the buffering effects of urban trees group in dike-break floods. Scientific Reports, 13(1), 17096. https://doi.org/10.1038/s41598-023-44024-7
  • Liu, Y., Pan, B., Zhu, X., Zhao, X., Sun, H., He, H., & Jiang, W. (2022). Patterns of microbial communities and their relationships with water quality in a large-scale water transfer system. Journal of Environmental Management, 319, 115678. https://doi.org/10.1016/j.jenvman.2022.115678
  • Maddahian, R., Shaygan, F., & Bucur, D. M. (2021, March 21–26). Developing a 1D-3D model to investigate the effect of entrapped air on pressure surge during the rapid filling of a pipe. In IOP Conference Series: Earth and Environmental Science, 30th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2020) (Vol. 774, No. 1, p. 012069). IOP Publishing. https://doi.org/10.1088/1755-1315/774/1/012069
  • Malekpour, A. (2014). Analysis of rapid pipeline filling including column separation & entrapped air effects. University of Toronto, Canada.
  • Malekpour, A., & Karney, B. (2014a). Column separation and rejoinder during rapid pipeline filling induced by a partial flow blockage. Journal of Hydraulic Research, 52(5), 693–704. https://doi.org/10.1080/00221686.2014.905502
  • Malekpour, A., & Karney, B. W. (2014b). Profile-induced column separation and rejoining during rapid pipeline filling. Journal of Hydraulic Engineering, 140(11), 04014054. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000918
  • Martins, N. M., Delgado, J. N., Ramos, H. M., & Covas, D. I. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506–519. https://doi.org/10.1080/00221686.2016.1275046
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Noorani, A., & Schlatter, P. (2016). Swirl-switching phenomenon in turbulent flow through toroidal pipes. International Journal of Heat and Fluid Flow, 61, 108–116. https://doi.org/10.1016/j.ijheatfluidflow.2016.05.021
  • Oshinowo, T., & Charles, M. E. (1974). Vertical two-phase flow part I. Flow pattern correlations. The Canadian Journal of Chemical Engineering, 52(1), 25–35. https://doi.org/10.1002/cjce.5450520105
  • Patrick, A. (2015). Air entrainment and acoustic wave celerities following a rapidly moving pipe filling bore. Auburn University, America.
  • Pozos-Estrada, O. (2018). Investigation of the combined effect of air pockets and air bubbles on fluid transients. Journal of Hydroinformatics, 20(2), 376–392. https://doi.org/10.2166/hydro.2017.018
  • Ramos, H. M., Fuertes-Miquel, V. S., Tasca, E., Coronado-Hernández, O. E., Besharat, M., Zhou, L., & Karney, B. (2022). Concerning dynamic effects in pipe systems with two-phase flows: Pressure surges, cavitation, and ventilation. Water, 14(15), 2376. https://doi.org/10.3390/w14152376
  • Romero, G., Fuertes-Miquel, V. S., Coronado-Hernández, Ó. E., Ponz-Carcelén, R., & Biel-Sanchis, F. (2020). Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water Journal, 17(6), 568–575. https://doi.org/10.1080/1573062X.2020.1800762
  • Schulz, H. E., Vasconcelos, J. G., & Patrick, A. C. (2020). Air entrainment in pipe-filling bores and pressurization interfaces. Journal of Hydraulic Engineering, 146(2), 04019053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001672
  • Shang, Q., Wang, S., Pan, X., Shi, S., Ma, Y., & Jiang, J. (2021). Two-phase expanding mechanism and pressure response characteristic of boiling liquid expanding vapor explosion under rapid depressurization. Process Safety and Environmental Protection, 148, 959–967. https://doi.org/10.1016/j.psep.2021.02.023
  • Tijsseling, A. S. (2019). An overview of flfluid-structure interaction experiments in single-elbow pipe systems. Journal of Zhejiang University-SCIENCE A, 20(4), 233–242. https://doi.org/10.1631/JZUS.A1800564
  • Tijsseling, A. S., Hou, Q., Bozkus, Z., & Laanearu, J. (2016). Improved one-dimensional models for rapid emptying and fifilling of pipelines. Journal of Pressure Vessel Technology, 138(3), 031301. https://doi.org/10.1115/1.4031508
  • Vasconcelos, J. G., & Wright, S. J. (2017). Anticipating transient problems during the rapid filling of deep stormwater storage tunnel systems. Journal of Hydraulic Engineering, 143(3), 06016025. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001250
  • Wang, F. J., & Wang, L. (2017). Advances in water filling transients in large pipeline transfer systems. Journal of Hydroelectric Engineering, 36(11), 1–12. (in Chinese) https://doi.org/10.11660/slfdxb.20171101
  • Wang, J., & Vasconcelos, J. G. (2020). Investigation of manhole cover displacement during rapid filling of stormwater systems. Journal of Hydraulic Engineering, 146(4), 04020022. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001726
  • Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647–656. http://doi.org/10.1080/00221686.2017.1300193
  • Zhang, Y., Zhao, R., Wang, H., Peng, T., & Zhao, H. (2021). A gateway to rapid prediction of water quality: A case study in China’s South-to-North Water diversion project. Water, 13(17), 2407. https://doi.org/10.3390/w13172407
  • Zhou, F. (2000). Effects of trapped air on flow transients in rapidly filling sewers. University of Alberta, Canada.
  • Zhou, L., Cao, Y., Karney, B., Bergant, A., Tijsseling, A., Liu, D., & Wang, P. (2020). Expulsion of entrapped air in a rapidly filling horizontal pipe. Journal of Hydraulic Engineering, 146(7), 04020047. https://doi.org/10.3850/38WC092019-1818
  • Zhou, L., Cao, Y., Karney, B., Vasconcelos, J. G., Liu, D., & Wang, P. (2020). Unsteady friction in transient vertical-pipe flow with trapped air. Journal of Hydraulic Research, 59(5), 820–834. https://doi.org/10.1080/00221686.2020.1844808
  • Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of entrapped air pockets on hydraulic transients in water pipelines. Journal of Hydraulic Engineering, 137(12), 1686–1692. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000460
  • Zhou, L., Lu, Y., Karney, B., Wu, G., Elong, A., & Huang, K. (2023). Energy dissipation in a rapid filling vertical pipe with trapped air. Journal of Hydraulic Research, 61(1), 120–132. https://doi.org/10.1080/00221686.2022.2132309
  • Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic behavior of entrapped air pocket in a water filling pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001491

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.