47
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In-Vitro Degradation Behaviors and Biocompatibility of Sodium Alginate/Platelet-Rich Plasma-Sr2+ Porous Microcarriers

, , , , , & show all
Pages 333-342 | Received 27 Sep 2023, Accepted 02 Oct 2023, Published online: 27 Oct 2023

References

  • Yousefi, A.-M.; Hoque, M. E.; Prasad, R. G. S. V.; Uth, N. Current Strategies in Multiphasic Scaffold Design for Osteochondral Tissue Engineering: A Review. J. Biomed. Mater. Res. 2015, 103, 2460–2481. DOI: 10.1002/jbm.a.35356.
  • Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cell Blood Sub. 2017, 45, 185–192. DOI: 10.3109/21691401.2016.1146731.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. DOI: 10.1002/polb.22259.
  • Peng, Z.; Zou, T. In-Vitro Degradation Behaviors of Composite Scaffolds Based on 1,4-Butadnediamine Modified Poly(Lactide-co-Glycolide) and Nanobioceramics. J. Macromol. Sci., Part B, Phys 2019, 58, 505–517. DOI: 10.1080/00222348.2019.1593601.
  • Zhou, Z.; Xiang, L.; Ou, B.; Huang, T.; Zhou, H.; Zeng, W.; Liu, L.; Liu, Q.; Zhao, Y.; He, S.; Huang, H. Biological Assessment in-Vivo of Gel-HA Scaffold Materials Containing Nano-Bioactive Glass for Tissue Engineering. J. Macromol. Sci., Part A, Pure Appl. Chem. 2014, 51, 572–576. DOI: 10.1080/10601325.2014.916178.
  • Zhang, Q.; Zhou, Z.; Peng, C.; Huang, T.; Liu, W.; Liu, Q.; Zhou, H.; Wang, W.; Yan, H. Preparation and Properties of Novel Maleated Poly (D, L-Lactide-co-Glycolide) Porous Scaffolds for Tissue Engineering. J. Macromol. Sci., Part B, Phys 2017, 56, 505–515. DOI: 10.1080/00222348.2017.1330132.
  • Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotr, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Bio. Craniofac. Res 2020, 10, 381–388. DOI: 10.1016/j.jobcr.2019.10.003.
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Ahmadi, R.; Mordan, N.; Forbes, A.; Day, R. M. Enhanced Attachment, Growth and Migration of Smooth Muscle Cells on Microcarriers Produced Using Thermally Induced Phase Separation. Acta Biomater 2011, 7, 1542–1549. DOI: 10.1016/j.actbio.2010.12.022.
  • Fang, J.; Zhang, Y.; Yan, S.; Liu, Z.; He, S.; Cui, L.; Yin, J. Poly(l-Glutamic Acid)/Chitosan Polyelectrolyte Complex Porous Microspheres as Cell Microcarriers for Cartilage Regeneration. Acta Biomater 2014, 10, 276–288. DOI: 10.1016/j.actbio.2013.09.002.
  • Huang, L.; Xiao, L.; Jung Poudel, A. J.; Li, J.; Zhou, P.; Gauthier, M.; Liu, H.; Wu, Z.; Yang, G. Porous Chitosan Microspheres as Microcarriers for 3D Cell Culture. Carbohyd. Polym 2018, 202, 611–620. DOI: 10.1016/j.carbpol.2018.09.021.
  • Yi, M.; Zhou, Z.; Liu, W.; Huang, T.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; Fang, J. In-Vitro Degradation Behaviors of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Microspheres. J. Macromol. Sci., Part B, Phys 2021, 60, 521–529. DOI: 10.1080/00222348.2021.1876975.
  • Custódio, C. A.; Cerqueira, M. T.; Marques, A. P.; Reis, R. L.; Mano, J. F. Cell Selective Chitosan Microparticles as Injectable Cell Carriers for Tissue Regeneration. Biomaterials 2015, 43, 23–31. DOI: 10.1016/j.biomaterials.2014.11.047.
  • Zhang, S.; Ma, B.; Wang, S.; Duan, J.; Qiu, J.; Li, D.; Sang, Y.; Ge, S.; Liu, H. Mass-Production of Fluorescent Chitosan/Graphene Oxide Hybrid Microspheres for in Vitro 3D Expansion of Human Umbilical Cord Mesenchymal Stem Cells. Chem. Eng. J. 2018, 331, 675–684. DOI: 10.1016/j.cej.2017.09.014.
  • Yan, S.; Xia, P.; Xu, S.; Zhang, K.; Li, G.; Cui, L.; Yin, J. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA-g-Poly(γ-Benzyl-l-Glutamate) for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2018, 10, 16270–16281. DOI: 10.1021/acsami.8b02448.
  • Radaei, P.; Mashayekhan, S.; Vakilian, S. Modeling and Optimization of Gelatin/Chitosan Micro-Carriers Preparation for Soft Tissue Engineering: Using Response Surface Methodology. Mater. Sci. Eng. C 2017, 75, 545–553. DOI: 10.1016/j.msec.2017.02.108.
  • Gu, J.; Zhou, Z.; Huang, T.; Wu, W.; Liu, W.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; et al. Preparation and Properties of Poly(D,L-Lactide-co-Glycolide-co-ε-Caprolactone)/1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) Blend Porous Microspheres. J. Macromol. Sci., Part B, Phys. 2022, 61, 270–280. DOI: 10.1080/00222348.2021.2002457.
  • Wu, X. B.; Peng, C. H.; Huang, F.; Kuang, J.; Yu, S. L.; Dong, Y. D.; Han, B. S. Preparation and Characterization of Chitosan Porous Microcarriers for Hepatocyte Culture. Hepatobiliary Pancreat Dis. Int. 2011, 10, 509–515. DOI: 10.1016/S1499-3872(11)60086-6.
  • Ding, S.-L.; Liu, X.; Zhao, X.-Y.; Wang, K.-T.; Xiong, W.; Gao, Z.-L.; Sun, C.-Y.; Jia, M.-X.; Li, C.; Gu, Q.; Zhang, M.-Z. Microcarriers in Application for Cartilage Tissue Engineering: Recent Progress and Challenges. Bioact. Mater. 2022, 17, 81–108. DOI: 10.1016/j.bioactmat.2022.01.033.
  • Chen, P.; Zhou, Z.; Liu, W.; Huang, T.; Wu, W.; Yi, M.; Zhang, C.; He, X.; Fang, J. Preparation and Properties of Sodium Alginate/Silk Fibroin Microcarriers. J. Macromol. Sci., Part B, Phys. 2022, 61, 636–648. DOI: 10.1080/00222348.2022.2093014.
  • Zhou, Z.; Wu, W.; Fang, J.; Yin, J. Polymer-Based Porous Microcarriers as Cell Delivery Systems for Applications in Bone and Cartilage Tissue Engineering. Int. Mater. Rev. 2021, 66, 77–113. DOI: 10.1080/09506608.2020.1724705.
  • Fang, J.; Wang, D.; Hu, F.; Li, X.; Zou, X.; Xie, J.; Zhou, Z. Strontium Mineralized Silk Fibroin Porous Microcarriers with Enhanced Osteogenesis as Injectable Bone Tissue Engineering Vehicles. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 128, 112354. DOI: 10.1016/j.msec.2021.112354.
  • Park, J.-H.; Pérez, R. A.; Jin, G.-Z.; Choi, S.-J.; Kim, H.-W.; Wall, I. B. Microcarriers Designed for Cell Culture and Tissue Engineering of Bone. Tissue Eng. Part. B. Rev. 2013, 19, 172–190. DOI: 10.1089/ten.TEB.2012.0432.
  • Yan, H.; Zhou, Z.; Huang, T.; Peng, C.; Liu, Q.; Zhou, H.; Zeng, W.; Liu, L.; Ou, B.; He, S.; Huang, H. Controlled Release in Vitro of Icariin from Gelatin/Hyaluronic Acid Composite Microspheres. Polym. Bull 2016, 73, 1055–1066. DOI: 10.1007/s00289-015-1534-x.
  • Li, C.; Zhao, S.; Zhao, Y.; Qian, Y.; Li, J.; Yin, Y. Chemically Crosslinked Alginate Porous Microcarriers Modified with Bioactive Molecule for Expansion of Human Hepatocellular Carcinoma Cells. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1648–1658. DOI: 10.1002/jbm.b.33150.
  • Garcia-Astrain, C.; Averous, L. Synthesis and Evaluation of Functional Alginate Hydrogels Based on Click Chemistry for Drug Delivery Applications. Carbohyd. Polym. 2018, 190, 271–280. DOI: 10.1016/j.carbpol.2018.02.086.
  • Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N. T.; Petkov, P. S.; Vayssilov, G. N.; Garrido, M. J. Optimization and in-Vitro/in-Vivo Evaluation of Doxorubicin-Loaded Chitosan-Alginate Nanoparticles Using a Melanoma Mouse Model. Int. J. Pharm. 2019, 556, 1–8. DOI: 10.1016/j.ijpharm.2018.11.070.
  • Xin, X. Z.; Wu, J. N.; Zheng, A.; Jiao, D. L.; Liu, Y.; Cao, L. Y.; Jiang, X. Q. Delivery Vehicle of Muscle-Derived Irisin Based on Silk/Calcium Silicate/Sodium Alginate Composite Scaffold for Bone Regeneration. Int. J. Nanomedicine 2019, 14, 1451–1467. DOI: 10.2147/IJN.S193544.
  • Gentile, P.; Garcovich, S. Systematic Review: Adipose-Derived Mesenchymal Stem Cells, Platelet-Rich Plasma and Biomaterials as New Regenerative Strategies in Chronic Skin Wounds and Soft Tissue Defects. Int. J. Mol. Sci. 2021, 22, 1538. DOI: 10.3390/ijms22041538.
  • Kutlu, B.; Tiğlı Aydın, R. S.; Akman, A. C.; Gümüşderelioglu, M.; Nohutcu, R. M. Platelet-Rich Plasma-Loaded Chitosan Scaffolds: Preparation and Growth Factor Release Kinetics. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 28–35. DOI: 10.1002/jbm.b.32806.
  • Buul, G. V.; Koevoet, W.; Kops, N.; Bos, P. K.; Verhaar, J.; Weinans, H.; Be Rnsen, M. R.; Osch, G. V. Platelet-Rich Plasma Releasate Inhibits Inflammatory Processes in Osteoarthritic Chondrocytes. Am. J. Sports Med. 2011, 39, 2362–2370. DOI: 10.1177/0363546511419278.
  • Li, M.; Han, H.; Chen, L.; Li, H. Platelet-Rich Plasma Contributes to Chondroprotection by Repairing Mitochondrial Function via AMPK/NF-κB Signaling in Osteoarthritic Chondrocytes. Tissue Cell 2022, 77, 101830. DOI: 10.1016/j.tice.2022.101830.
  • Di Matteo, B.; Kon, E.; Filardo, G. Intra-Articular Platelet-Rich Plasma for the Treatment of Osteoarthritis. Ann. Transl. Med. 2016, 4, 63. DOI: 10.3978/j.issn.2305-5839.2016.01.18.
  • Anand, U.; Mehta, D. S. Evaluation of Immediately Loaded Dental Implants Bioactivated with Platelet-Rich Plasma Placed in the Mandibular Posterior Region: A Clinico-Radiographic Study. J. Indian Soc. Periodontol. 2012, 16, 89–95. DOI: 10.4103/0972-124X.94612.
  • Mazor, Z.; Peleg, M.; Garg, A. K.; Luboshitz, J. Platelet-Rich Plasma for Bone Graft Enhancement in Sinus Floor Augmentation with Simultaneous Implant Placement: Patient Series Study. Implant Dent. 2004, 13, 65–72. DOI: 10.1097/01.ID.0000116454.97671.40.
  • Hu, H.; Zhou, Z.; Liu, W.; Wu, W.; Fang, Z.; Gan, Y.; Fang, J. Preparation of Injectable Sodium Alginate/Platelet Rich Plasma Porous Microcarriers. J. Macromol. Sci., Part B, Phys 2023, 62, 195–205. DOI: 10.1080/00222348.2023.2209378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.