78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Smart Molecularly Imprinted Polymer Based on Liquid Crystals for Herbicide Recognition

, , , , , , & show all
Pages 513-535 | Received 29 Jul 2023, Accepted 12 Oct 2023, Published online: 08 Nov 2023

References

  • Kuang, L.; Hou, Y.; Huang, F.; Hong, H.; Sun, H.; Deng, W.; Lin, H. Pesticide Residues in Breast Milk and the Associated Risk Assessment: A Review Focused on China. Sci. Total Environ. 2020, 727, 138412. DOI: 10.1016/j.scitotenv.2020.138412.
  • Qu, F.; Lin, L.; Cai, C.; Chu, B.; Wang, Y.; He, Y.; Nie, P. Terahertz Finger Print Characterization of 2,4-Dichlorophenoxyacetic Acid and Its Enhanced Detection in Food Matrices Combined with Spectral Baseline Correction. Food Chem. 2021, 334, 127474. DOI: 10.1016/j.foodchem.2020.127474.
  • Li, Z.-F.; Dong, J.-X.; Vasylieva, N.; Cui, Y.-L.; Wan, D.-B.; Hua, X.-D.; Huo, J.-Q.; Yang, D.-C.; Gee, S. J.; Hammock, B. D. Highly Specific Nanobody against Herbicide 2,4-Dichlorophenoxyacetic Acid for Monitoring of Its Contamination in Environmental Water. Sci. Total Environ. 2021, 753, 141950. DOI: 10.1016/j.scitotenv.2020.141950.
  • Zhu, X.; Li, J.; Xie, B.; Feng, D.; Li, Y. Accelerating Effects of Biochar for Pyrite-Catalyzed Fenton-like Oxidation of Herbicide 2,4-D. Chem. Eng. J. 2020, 391, 123605. DOI: 10.1016/j.cej.2019.123605.
  • Yang, W.; Zhou, M.; Oturan, N.; Li, Y.; Su, P.; Oturan, M. A. Enhanced Activation of Hydrogen Peroxide Using Nitrogen Doped Graphene for Effective Removal of Herbicide 2,4-D from Water by Iron-Free Electrochemical Advanced Oxidation. Electrochim. Acta 2019, 297, 582–592. DOI: 10.1016/j.electacta.2018.11.196.
  • Zhang, Z.; Ma, X.; Jia, M.; Li, B.; Rong, J.; Yang, X. Deposition of CdTe Quantum Dots on Microfluidic Paper Chips for Rapid Fluorescence Detection of Pesticide 2,4-D. Analyst 2019, 144, 1282–1291. DOI: 10.1039/C8AN02051E.
  • Goswami, B.; Mahanta, D. Fe3O4-Polyaniline Nanocomposite for Non-Enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS Omega 2021, 6, 17239–17246. DOI: 10.1021/acsomega.1c00983.
  • Yang, Y.; O’Riordan, A.; Lovera, P. Highly Sensitive Pesticide Detection Using Electro- Chemically Prepared Silver-GumArabic Nanocluster SERS Substrates. Sens. Actuator B Chem. 2022, 364, 131851. DOI: 10.1016/j.snb.2022.131851.
  • Tölgyesi, Á.; Korozs, G.; Tóth, E.; Bálint, M.; Ma, X.; Sharma, V. K. Automation in Quantifying Phenoxy Herbicides and Bentazon in Surface Water and Ground Water Using Novel Solid Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry. Chemosphere 2022, 286, 131927. DOI: 10.1016/j.chemosphere.2021.131927.
  • Han, Y.; Wang, Z.; Jia, J.; Bai, L.; Liu, H.; Shen, S.; Yan, H. Newly Designed Molecularly Imprinted 3-Aminophenol-Glyoxal-Urea Resin as Hydrophilic Solid-Phase Extraction Sorbent for Specific Simultaneous Determination of Three Plant Growth Regulators in Green Bell Peppers. Food Chem. 2020, 311, 125999. DOI: 10.1016/j.foodchem.2019.125999.
  • Zhang, K.; Wang, Y.; We, Q.; Huang, Q.; Li, T.; Zhang, Y.; Luo, D. Preparation and Characterization of Magnetic Molecularly Imprinted Polymer for Specific Adsorption of Wheat Gliadin. J. Mol. Struct. 2022, 1265, 133227. DOI: 10.1016/j.molstruc.2022.133227.
  • Karuehanon, W.; Funfuenha, W.; Phuttawong, N. Selective Triphenylphosphine Oxide Imprinted Polymer for Solid Scavenger Application in Organic Synthesis. J. Chem. Sci. 2022, 134, 21. DOI: 10.1007/s12039-021-02021-1.
  • Guć, M.; Messyasz, B.; Schroeder, G. Environmental Impact of Molecularly Imprinted Polymers Used as Analyte Sorbents in Mass Spectrometry. Sci. Total Environ. 2021, 772, 145074. DOI: 10.1016/j.scitotenv.2021.145074.
  • Lee, J.; Yang, J. C.; Lone, S.; Park, W. I.; Lin, Z.; Park, J.; Hong, S. W. Enabling the Selective Detection of Endocrine-Disrupting Chemicals via Molecularly Surface-Imprinted “Coffee Rings”. Biomacromolecules 2021, 22, 1523–1531. DOI: 10.1021/acs.biomac.0c01748.
  • Beladghame, O.; Bouchikhi, N.; Lerari, D.; Charif, I. E.; Soppera, O.; Maschke, U.; Bedjaoui-Alachaher, L. Elaboration and Characterization of Molecularly Imprinted Polymer Films Based on Acrylate for Recognition of 2, 4-D Herbicide Analogue. Iran. Polym. J. 2023, 32, 483–497. DOI: 10.1007/s13726-023-01143-2.
  • Paruli, E. I.; Soppera, O.; Haupt, K.; Gonzato, C. Photopolymerization and Photostructuring of Molecularly Imprinted Polymers. ACS Appl. Polym. Mater. 2021, 3, 4769–4790. DOI: 10.1021/acsapm.1c00661.
  • Kajisa, T.; Sakata, T. Molecularly Imprinted Artificial Biointerface for an Enzyme-Free Glucose Transistor. ACS Appl. Mater. Interfaces 2018, 10, 34983–34990. DOI: 10.1021/acsami.8b13317.
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. DOI: 10.1021/acs.chemrev.8b00171.
  • Suwanwong, Y.; Boonpangrak, S. Molecularly Imprinted Polymers for the Extraction and Determination of Water-Soluble Vitamins: A Review from 2001 to 2020. Eur. Polym. J. 2021, 161, 110835. DOI: 10.1016/j.eurpolymj.2021.110835.
  • Wei, Z. H.; Mu, L. N.; Huang, Y. P.; Liu, Z. S. Low Crosslinking Imprinted Coatings Based on Liquid Crystal for Capillary Electrochromatography. J. Chromatogr. A 2012, 1237, 115–121. DOI: 10.1016/j.chroma.2012.03.041.
  • Ramakers, G.; Wackers, G.; Trouillet, V.; Welle, A.; Wagner, P.; Junkers, T. Laser-Grafted Molecularly Imprinted Polymers for the Detection of Histamine from Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2019, 52, 2304–2313. DOI: 10.1021/acs.macromol.8b02339.
  • Montagna, V.; Haupt, K.; Gonzato, C. RAFT Coupling Chemistry: A General Approach for Post-Functionalizing Molecularly Imprinted Polymers Synthesized by Radical Polymerization. Polym. Chem. 2020, 11, 1055–1061. DOI: 10.1039/C9PY01629E.
  • Yang, J.; Zhang, X.; Mijiti, Y.; Sun, Y.; Jia, M.; Liu, Z.; Huang, Y.; Aisa, H. A. Improving Performance of Molecularly Imprinted Polymers Prepared with Template of Low Purity Utilizing the Strategy of Macromolecular Crowding. J. Chromatogr. A 2020, 1624, 461155. DOI: 10.1016/j.chroma.2020.461155.
  • Jia, M.; Yang, J.; Sun, Y. K.; Bai, X.; Wu, T.; Liu, Z. S.; Aisa, H. A. Improvement of Imprinting Effect of Ionic Liquid Molecularly Imprinted Polymers by Use of a Molecular Crowding Agent. Anal. Bioanal. Chem. 2018, 410, 595–604. DOI: 10.1007/s00216-017-0760-5.
  • Chen, W. J.; Shang, P. P.; Fang, S. B.; Huang, Y. P.; Liu, Z. S. Origin of Macromolecular Crowding: Analysis of Recognition Mechanism of Dual-Template Molecularly Imprinted Polymers by in Silico Prediction. J. Chromatogr. A 2022, 1662, 462695. DOI: 10.1016/j.chroma.2021.462695.
  • Tan, N.; Chen, C.; Ji, K.; Liao, S.; Liu, Y.; Hu, L.; He, L.; Ding, Z. Preparation and Properties of Hollow Magnetic Liquid Crystal Molecularly Imprinted Polymers as Silybin Sustained‐Release Carriers. Chemistry Select 2021, 6, 9024–9031. DOI: 10.1002/slct.202101786.
  • Zhang, L. P.; Mo, C. E.; Huang, Y. P.; Liu, Z. S. Preparation of Liquid Crystalline Molecularly Imprinted Polymer Coated Metalorganic Framework for Capecitabine Delivery. Part. Part. Syst. Charact. 2019, 36, 1800355. DOI: 10.1002/ppsc.201800355.
  • BelBruno, J. J.; Richter, A.; Gibson, U. J. Amazing Pores: Processing, Morphology and Functional States of Molecularly Imprinted Polymers as Sensor Materials. Mol. Cryst. Liq. Cryst. 2008, 483, 179–190. DOI: 10.1080/15421400801905135.
  • Marty, J. D.; Mauzac, M.; Fournier, C.; Rico-Lattes, I.; Lattes, A. Liquid Crystal Polysiloxane Networks as Materials for Molecular Imprinting Technology: Memory of the Mesomorphic Organization. Liq. Cryst. 2002, 29, 529–536. DOI: 10.1080/02678290110068433.
  • Binet, C.; Ferrère, S.; Lattes, A.; Laurent, E.; Marty, J.-D.; Mauzac, M.; Mingotaud, A.-F.; Palaprat, G.; Weyland, M. Benefit of Liquid Crystal Moieties in the MIP Technique. Anal. Chim. Acta 2007, 591, 1–6. DOI: 10.1016/j.aca.2006.12.042.
  • Binet, C.; Bourrier, D.; Dilhan, M.; Estève, D.; Ferrère, S.; Garrigue, J.-C.; Granier, H.; Lattes, A.; Gué, A.-M.; Mauzac, M.; Mingotaud, A.-F. First Approach to the Use of Liquid Crystal Elastomers for Chemical Sensors. Talanta 2006, 69, 757–762. DOI: 10.1016/j.talanta.2005.11.027.
  • Wei, Q.; Chen, X.; Bai, L.; Zhao, L.; Huang, Y.; Liu, Z. Preparation of Liquid Crystal-Based Molecularly Imprinted Monolith and Its Molecular Recognition Thermodynamics. Se Pu 2021, 39, 1171–1181. DOI: 10.3724/sp.j.1123.2021.01017.
  • Cieplak, M.; Węgłowski, R.; Iskierko, Z.; Węgłowska, D.; Sharma, P. S.; Noworyta, K. R.; D'Souza, F.; Kutner, W. Protein Determination with Molecularly Imprinted Polymer Recognition Combined with Birefringence Liquid Crystal Detection. Sensors 2020, 20, 4692. DOI: 10.3390/s20174692.
  • Zhang, L. P.; Wei, Z. H.; He, S. N.; Huang, Y. P.; Liu, Z. S. Preparation, Charactriza-Tion, and Application of Soluble Liquid Crystalline Molecularly Imprinted Polymer in Electrochemical Sensor. Anal. Bioanal. Chem. 2020, 412, 7321–7332. DOI: 10.1007/s00216-020-02866-4.
  • Palaprat, G.; Mingotaud, A. F.; Langevin, D.; Mauzac, M.; Marty, J. D. Molecularly Imprinted Cholesteric Materials for Enhanced Enantiomeric Separation. Polymer 2022, 243, 124654. DOI: 10.1016/j.polymer.2022.124654.
  • Yun, Y. H.; Shon, H. K.; Yoon, S. D. Preparation and Characterization of Molecularly Imprinted Polymers for the Selective Separation of 2,4-Dichlorophenoxyacetic Acid. J. Mater. Sci. 2009, 44, 6206–6211. DOI: 10.1007/s10853-009-3863-3.
  • Del Sole, R.; De Luca, A.; Catalano, M.; Mele, G.; Vasapollo, G. Noncovalent Imprinted Microspheres: Preparation, Evaluation and Selectivity of DBU Template. J. Appl. Polym. Sci. 2007, 105, 2190–2197. DOI: 10.1002/app.26208.
  • Djamaa, Z.; Lerari, D.; Mesli, A.; Bachari, K. Poly (Acrylic Acid-co-Styrene)/Clay Nanocomposites: Efficient Adsorbent for Methylene Blue Dye Pollutant. Int. J. Plast. Technol. 2019, 23, 110–121. DOI: 10.1007/s12588-019-09237-4.
  • Pavlovic, I.; Barriga, C.; Hermosín, M. C.; Cornejo, J.; Ulibarri, M. A. Adsorption of Acidic Pesticides 2,4-D, Clopyralid and Picloram on Calcined Hydrotalcite. Appl. Clay. Sci. 2005, 30, 125–133. DOI: 10.1016/j.clay.2005.04.004.
  • Dounya, M.; Maschke, U.; Bouchikhi, N.; Ziani Chérif, H.; Bedjaoui-Alachaher, L. Characterization of Swelling Behavior and Elastomer Properties of Acrylate Polymers Containing 2-Ethylhexyl and Isobornyl Esters. Polym. Bull. 2022, 1, 10073–10098. DOI: 10.1007/s00289-022-04491-w.
  • Campbell, S. E.; Collins, M.; Xie, L.; BelBruno, J. J. Surface Morphology of Spin‐Coated Molecularly Imprinted Polymer Films. Surf. Interface Anal. 2009, 41, 347–356. DOI: 10.1002/sia.3030.
  • Costa, J. C. S.; Ando, R. A.; Sant’Ana, A. C.; Rossi, L. M.; Santos, P. S.; Temperini, M. L. A.; Corio, P. High Performance Gold Nanorods and Silver Nanocubes in Surface-Enhanced Raman Spectroscopy of Pesticides. Phys. Chem. Chem. Phys. 2009, 11, 7491–7498. DOI: 10.1039/B904734D.
  • Benladghem, Z.; Seddiki, S. M. L.; Dergal, F.; Mahdad, Y. M.; Aissaoui, M.; Choukchou-Braham, N. Biofouling of Reverse Osmosis Membranes: Assessment by Surface-Enhanced Raman Spectroscopy and Microscopic Imaging. Biofouling 2022, 38, 852–864. DOI: 10.1080/08927014.2022.2139610.
  • Hilal, N.; Kochkodan, V.; Al‐Khatib, L.; Busca, G. Characterization of Molecularlyimprinted Composite Membranes Using an Atomic Force Microscope. Surf. Interface Anal. 2002, 33, 672–675. DOI: 10.1002/sia.1434.
  • López, M. D. M. C.; Pérez, M. C.; García, M. S. D.; Vilariño, J. M. L.; Rodríguez, M. V. G.; Losada, L. F. B. Preparation, Evaluation and Characterization of Quercetin-Molecularly Imprinted Polymer for Preconcentration and Clean-up of Catechins. Anal. Chim. Acta 2012, 721, 68–78. DOI: 10.1016/j.aca.2012.01.049.
  • Chapuis, F.; Pichon, V.; Lanza, F.; Sellergren, B.; Hennion, M. C. Retention Mechanism of Analytes in the Solid-Phase Extraction Process Using Molecularly Imprinted Polymers: Application to the Extraction of Triazines from Complex Matrices. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 804, 93–101. DOI: 10.1016/j.jchromb.2003.12.033.
  • Cao, F.; Wang, L.; Tian, Y.; Wu, F.; Deng, C.; Guo, Q.; Sun, H.; Lu, S. Synthesis and Evaluation of Molecularly Imprinted Polymers with Binary Functional Monomers for the Selective Removal of Perfluorooctane Sulfonic Acid and Perfluoro Octanoic Acid. J. Chromatogr. A 2017, 1516, 42–53. DOI: 10.1016/j.chroma.2017.08.023.
  • Yuan, F. F.; Zhang, R. R.; Ma, X.; Yang, J.; Huang, Y. P.; Liu, Z. S. Cooperation Effect of 4-Vinylbenzeneboronic Acid/Methacrylic Acid on Affinity of Capecitabine Imprinted Polymer for Drug Carrier. Eur. J. Pharm. Sci. 2020, 154, 105476. DOI: 10.1016/j.ejps.2020.105476.
  • Chen, J.; Wang, L.; Liu, Y.; Chen, L.; Li, X.; Wang, X.; Zhu, G. Highly Selective Removal of Kitasamycin from the Environment by Molecularly Imprinted Polymers: Adsorption Performance and Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126926. DOI: 10.1016/j.colsurfa.2021.126926.
  • Annamma, K. M.; Beena, M. Design of 2, 4-Dichlorophenoxyacetic Acid Imprinted Polymer with High Specificity and Selectivity. Mater. Sci. Appl. 2011, 02, 131–140. DOI: 10.4236/msa.2011.23017.
  • Schwarz, L.; Holdsworth, C. I.; McCluskey, A.; Bowyer, M. C. Synthesis and Evaluation of a Molecularly Imprinted Polymer Selective to 2,4,6-Trichlorophenol. Aust. J. Chem. 2004, 57, 759–764. DOI: 10.1071/CH04004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.