53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interactions between Diphenylamine with 2-Hydroxypropyl β-Cyclodextrin based on Spectral, Biological and Theoretical Investigations

, , , &
Pages 536-569 | Received 22 Jun 2023, Accepted 13 Oct 2023, Published online: 31 Oct 2023

References

  • Drzyzga, O. Diphenylamine and Derivatives in the Environment: A Review. Chemosphere 2003, 53, 809–818. DOI: 10.1016/S0045-6535(03)00613-1.
  • Chattopadhyay, N.; Sur, D.; Purkayastha, P. Kinetics of the Photoconversion of Diphenylamine in β-Cyclodextrin Environments. J. Photochem. Photobiol. A 2000, 134, 17–21. DOI: 10.1016/S1010-6030(00)00241-0.
  • KothaiNayaki, S.; Arumugam, V.; Swaminathan, M. Solvatochromism and Prototropism of Diphenylamine and N-Methyldiphenylamine: A Comparative Study by Electronic Spectra. Ind. J. Chem 1991, 30A, 665–669.
  • Srinivasan, K.; Kayalvizhi, K.; Sivakumar, K.; Stalin, T. Study of Inclusion Complex of β-Cyclodextrin and Diphenylamine: Photophysical and Electrochemical Behaviours. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 169–178. DOI: 10.1016/j.saa.2011.02.030.
  • Rajamohan, R.; Swaminathan, M. Effect of Inclusion Complexation on the Photophysical Behavior of Diphenylamine in β-Cyclodextrin Medium: A Study by Electronic Spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 83, 207–212. DOI: 10.1016/j.saa.2011.08.018.
  • Abdelaziz, B.; Leila, N.; Sakina, H.; Imene, D.; Fatiha, M.; Eddine, K. D. Theoretical Investigation Study Based on PM3MM and ONIOM2 Calculations of β-Cyclodextrin Complexes with Diphenylamine. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 455–462. DOI: 10.1007/s10847-012-0266-x.
  • Saravanan, C.; Chitumalla, R. K.; Yuvakumar, R.; Shanmugavelan, P.; Muthu Mareeswaran, P.; Jang, J. Experimental and Theoretical Investigations on the Host-Guest Interaction of Diphenylamine with p-Sulfonatocalix[4]Arene. Ind. J. Chem. 2020, 59A, 929–938.
  • Periasamy, R.; Kothai Nayaki, S.; Sivakumar, K.; Ramasamy, G. Synthesis and Characterization of Host-Guest Inclusion Complex of β-Cyclodextrin with 4,4′-Methylenedianiline by Diverse Methodologies. J. Mol. Liq. 2020, 316, 113843. DOI: 10.1016/j.molliq.2020.113843.
  • Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Host-Guest Inclusion Complex of β-Cyclodextrin and 4,4’-(1,4-Phenylenediisopropylidene)Bisaniline: Spectral, Structural and Molecular Modelling Studies. J. Mol. Struct. 2021, 1224, 129050. DOI: 10.1016/j.molstruc.2020.129050.
  • Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Investigation on Inter Molecular Complexation between 4,4’-Methylene-Bis(N,N-Dimethylaniline) and β-Cyclodextrin: Preparation and Characterization in Aqueous Medium and Solid State. J. Mol. Struct. 2015, 1080, 69–79. DOI: 10.1016/j.molstruc.2014.09.046.
  • Gu, W.; Liu, Y. Characterization and Stability of Beta-Acids/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. J. Mol. Struct. 2020, 1201, 127159. DOI: 10.1016/j.molstruc.2019.127159.
  • Anjum, M. M.; Patel, K. K.; Pandey, N.; Tilak, R.; Agrawal, A. K.; Singh, S. Development of Anacardic Acid/Hydroxypropyl-β-Cyclodextrin Inclusion Complex with Enhanced Solubility and Antimicrobial Activity. J. Mol. Liq. 2019, 296, 112085., DOI: 10.1016/j.molliq.2019.112085.
  • Prabhu, A. A. M.; Suresh Kumar, G. S.; Fatiha, M.; Sorimuthu, S.; Sundar Raj, M. Encapsulation of Phenylalanine and 3,4-Dihydroxyphenylalanine into β-Cyclodextrin: Spectral and Molecular Modeling Studies. J. Mol. Struct. 2015, 1079, 370–382. DOI: 10.1016/j.molstruc.2014.08.045.
  • Prabhu, A. A. M.; Fatiha, M.; Leila, N.; Anantha Raj, T.; Navarro-Gonzalez, I.; Periago, M. J.; Yáñez-Gascón, M. J.; Pérez-Sánchez, H. Investigation of 3D Contour Map and Intermolecular Interaction of Dopamine with Beta-Cyclodextrin and 2-Hydroxypropyl Beta-Cyclodextrin. J. Solution Chem. 2018, 47, 409–429. DOI: 10.1007/s10953-018-0728-x.
  • Antony Muthu Prabhu, A.; Fatiha, M.; Sivaraman, B.; Yáñez-Gascón, M. J.; Pérez-Sánchez, H. Effect of Natural and Modified Cyclodextrins on the Excited State Proton Transfer of 7-Hydroxy-4-Methylcoumarin. J. Mol. Liq. 2018, 268, 911–924. DOI: 10.1016/j.molliq.2018.07.040.
  • Rajendiran, N.; Prabhu, A. A. M.; Mohandoss, T.; Thulasidhasan, J.; Baskaran, R. Spectral and Theoretical Investigation of Inclusion Complex between Cinnamic Acid and Hydroxycinnamic Acids with Native Cyclodextrins. Poly. Arom. Comp. 2022, 42, 3563–3585. DOI: 10.1080/10406638.2020.1869794.
  • Prabhu, A. A. M.; Suresh Kumar, G. S. Inclusion Complexation of Phenoxyaliphatic Acid Derivatives of 3,3’-Bis(Indolyl)Methanes with β-Cyclodextrin. J. Fluoresc. 2014, 24, 925–931. DOI: 10.1007/s10895-014-1373-4.
  • Celebioglu, A.; Kayaci-Senirmak, F.; İpek, S.; Durgun, E.; Uyar, T. Polymer-Free Nanofibers from Vanillin/Cyclodextrin Inclusion Complexes: High Thermal Stability, Enhanced Solubility and Antioxidant Property. Food Funct. 2016, 7, 3141–3153. DOI: 10.1039/C6FO00569A.
  • Celebioglu, A.; Yildiz, Z.; Uyar, T. Thymol/Cyclodextrin Inclusion Complex Nanofibrous Webs: Enhanced Water Solubility, High Thermal Stability and Antioxidant Property of Thymol. Food Res. Int. 2018, 106, 280–290. DOI: 10.1016/j.foodres.2017.12.062.
  • Li, H.; Chang, S. L.; Chang, T. R.; You, Y.; Wang, X. D.; Wang, L. W.; Yuan, X. F.; Tan, M. H.; Wang, P. D.; Xu, P. W.; et al. Inclusion Complexes of Cannabidiol with β-Cyclodextrin and Its Derivative: Physicochemical Properties, Water Solubility, and Antioxidant Activity. J. Mol. Liq. 2021, 334, 116070. DOI: 10.1016/j.molliq.2021.116070.
  • Alizadeh, N.; Poorbagher, N. Host-Guest Inclusion Complexes of Sulfabenzamide with β- and Methyl-β-Cyclodextrins: Characterization, Antioxidant Activity and DFT Calculation. J. Mol. Struct. 2022, 1260, 132809., DOI: 10.1016/j.molstruc.2022.132809.
  • Yildiz, Z. I.; Kilic, M. E.; Durgun, E.; Uyar, T. Molecular Encapsulation of Cinnamaldehyde within Cyclodextrin Inclusion Complex Electrospun Anofibers: Fast-Dissolution, Enhanced Water Solubility, High Temperature Stability, and Antibacterial Activity of Cinnamaldehyde. J. Agric. Food Chem. 2019, 67, 11066–11076. DOI: 10.1021/acs.jafc.9b02789.
  • Duarte, A.; Martinho, A.; Luís, Â.; Figueiras, A.; Oleastro, M.; Domingues, F. C.; Silva, F. Resveratrol Encapsulation with Methyl-β-Cyclodextrin for Antibacterial and Antioxidant Delivery Applications. LWT Food Sci. Tech. 2015, 63, 1254–1260. DOI: 10.1016/j.lwt.2015.04.004.
  • Nora, M.; Ismahan, L.; Abdelkrim, G.; Mouna, C.; Leila, N.; Fatiha, M.; Nada, B.; Brahim, H. Interactions in Inclusion Complex of β-Cyclodextrin/l-Metheonine: DFT Computational Studies. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 43–54. DOI: 10.1007/s10847-019-00948-0.
  • Ignaczak, A.; Orszański, Ł.; Adamiak, M.; Olejniczak, A. B. Comparative DFT Study of Inclusion Complexes of Thymidine-Carborane Conjugate with β-Cyclodextrin and Heptakis (2,6-O-Dimethyl)-β-Cyclodextrin in Water. J. Mol. Liq. 2020, 315, 113767. DOI: 10.1016/j.molliq.2020.113767.
  • Ikeda, H.; Ohata, T.; Yukawa, M.; Tsutsumi, H.; Fujisawa, M.; Aki, H. Calculation Study on Complex Formation of Catechins with β-Cyclodextrin Using Density Function Theory. J. Incl. Phenom. Macrocycl. Chem. 2021, 100, 99–107. DOI: 10.1007/s10847-021-01057-7.
  • Higuchi, T.; Connors, K. A. Phase Solubility Techniques. In Advances in Analytical Chemistry and Instrumentation; Reilly, C.N., Ed.; Wiley-Interscience: New York, 1965; Vol. 4, pp 117–212.
  • Liu, B.; Li, W.; Zhao, J.; Liu, Y.; Zhu, X.; Liang, G. Physicochemical Characterization of the Supramolecular Structure of Luteolin/Cyclodextrin Inclusion Complex. Food Chem. 2013, 141, 900–906. DOI: 10.1016/j.foodchem.2013.03.097.
  • Jimoh, M. O.; Afolayan, A. J.; Lewu, F. B. Antioxidant and Phytochemical Activities of Amaranthus caudatus L. harvested from Different Solis at Various Grouth Stages. Sci. Rep. 2019, 9, 12965–12978. DOI: 10.1038/s41598-019-49276-w.
  • Neeraja Rani, G.; Budumuru, R.; RaoBandaru, N. Antibacterial Activity of Honey with Special Reference to Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Senstive Staphylococcus aureus (MSSA). JCDR 2017, 11, 5–8. DOI: 10.7860/JCDR/2017/30085.10347.
  • Yang, X.; Wang, D.; Zhou, Q.; Nie, F.; Du, H.; Pang, X.; Fan, Y.; Bai, T.; Xu, Y. Antibacterial Susceptibility Testing of Enterobacteriaceae: Determination of Disk Content and Kirby-Bauer Breakpoint for Ceftazidime/Avibactam. BMC Microbiol. 2019, 19, 240–246. DOI: 10.1186/s12866-019-1613-5.
  • Frisch, M. J. Gaussian 09; Gaussian, Inc.: Wallingford, 2009.
  • Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. Nbo Version 3.1, TCI; University of Wisconsin: Madison, 1998.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. DOI: 10.1002/jcc.22885.
  • Szejtli, J.; Atwood, J. L.; Lehn, J. M. Comprehensive Supramolecular Chemistry; Pergamon: New York, 1996; Vol. 3.
  • Liu, B.; Zeng, J.; Chen, C.; Liu, Y.; Ma, H.; Mo, H.; Liang, G. Interaction of Cinnamic Acid Derivatives with β-Cyclodextrin in Water: Experimental and Molecular Modeling Studies. Food. Chem. 2016, 194, 1156–1163. DOI: 10.1016/j.foodchem.2015.09.001.
  • Kfoury, M.; Landy, D.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Effect of Cyclodextrin Complexation on Phenylpropanoids’ Solubility and Antioxidant Activity. Beilstein J. Org. Chem. 2014, 10, 2322–2331. DOI: 10.3762/bjoc.10.241.
  • Shiozawa, R.; Inoue, Y.; Murata, I.; Kanamoto, I. Effect of Antioxidant Activity of Caffeic Acid with Cyclodextrins Using Ground Mixture Method. Asian J. Pharm. Sci. 2018, 13, 24–33. DOI: 10.1016/j.ajps.2017.08.006.
  • Jullian, C.; Orosteguis, T.; Perez-Cruz, F.; Sanchez, P.; Mendizabal, F.; Olea-Azar, C. Complexation of Morin with Three Kinds of Cyclodextrin: A Thermodynamic and Reactivity Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71, 269–275. DOI: 10.1016/j.saa.2007.12.020.
  • Shi, J. H.; Zhou, Y. F. Inclusion Interaction of Chloramphenicol and Heptakis(2,6-di-O-Methyl)-β-Cyclodextrin: Phase Solubility and Spectroscopic Methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 83, 570–574. DOI: 10.1016/j.saa.2011.09.005.
  • Shpigun, O. A.; Ananieva, I. A.; Budanova, N. Y.; Shapovalova, E. N. Use of Cyclodextrins for Separation of Enantiomers. Russ. Chem. Rev. 2003, 72, 1035–1054. DOI: 10.1070/RC2003v072n12ABEH000817.
  • Benesi, A.; Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. DOI: 10.1021/ja01176a030.
  • Chen, H.; Ji, H. Effect of Substitution Degree of 2-Hydroxypropyl-β-Cyclodextrin on the Alkaline Hydrolysis of Cinnamaldehyde to Benzaldehyde. Supra. Chem. 2014, 26, 796–803. DOI: 10.1080/10610278.2013.873126.
  • Bouzit, H.; Stiti, M.; Abdaoui, M. Spectroscopic and Molecular Modelling Investigations of Supramolecular Complex of β-Cyclodextrin with N-[(4-Sulfonamidophenyl)Ethyl]-5-(1,2-Dithiolan-3-yl)Pentanamide. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 121–134. DOI: 10.1007/s10847-016-0647-7.
  • Tang, B.; Chen, Z. Z.; Zhang, N.; Zhang, J.; Wang, Y. Synthesis and Characterization of a Novel Cross-Linking Complex of β-Cyclodextrin-o-Vanilin Furfaralhydrazone and Highly Selective Spectrofluorimetric Determination of Trace Gallium. Talanta 2006, 68, 575–580. DOI: 10.1016/j.talanta.2005.04.070.
  • Roy, M. N.; Saha, S.; Barman, S.; Ekka, D. Host-Guest Inclusion Complexes of RNA Nucleosides inside Aqueous Cyclodextrins Explored by Physicochemical and Spectroscopic Methods. RSC Adv. 2016, 6, 8881–8891. DOI: 10.1039/C5RA24102B.
  • Hamdi, H.; Abderrahim, R.; Meganem, F. Spectroscopic Studies of Inclusion Complex of β-Cyclodextrin and Benzidine Diammonium Dipicrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 32–36. DOI: 10.1016/j.saa.2009.09.018.
  • Raza, A.; Sun, H.; Bano, S.; Zhao, Y.; Xu, X.; Tang, J. Preparation, Characterization, and In Vitro anti-Inflammatory Evaluation of Novel Water Soluble Kamebakaurin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. J. Mol. Struct. 2017, 1130, 319–326. DOI: 10.1016/j.molstruc.2016.10.059.
  • Eid, E. E.; Abdul, A. B.; Suliman, F. E. O.; Sukari, M. A.; Rasedee, A.; Fatah, S. S. Characterization of the Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin. Carbohydr. Polym. 2011, 83, 1707–1714. DOI: 10.1016/j.carbpol.2010.10.033.
  • Zhang, J. Q.; Wu, D.; Jiang, K. M.; Zhang, D.; Zheng, X.; Wan, C. P.; Zhu, H. Y.; Xie, X. G.; Jin, Y.; Lin, J. Preparation, Spectroscopy and Molecular Modelling Studies of the Inclusion Complex of Cordycepin with Cyclodextrins. Carbohydr. Res. 2015, 406, 55–64. DOI: 10.1016/j.carres.2015.01.005.
  • Wei, Y.; Zhang, J.; Memon, A. H.; Liang, H. Molecular Model and in Vitro Antioxidant Activity of a Water-Soluble and Stable Phloretin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. J. Mol. Liq. 2017, 236, 68–75. DOI: 10.1016/j.molliq.2017.03.098.
  • Zhang, J. Q.; Li, K.; Cong, Y. W.; Pu, S. P.; Zhu, H. Y.; Xie, X. G.; Jin, Y.; Lin, J. Preparation, Characterisation and Bioactivity Evaluation of the Inclusion Complex Formed between Picoplatin and γ-Cyclodextrin. Carbohydr. Res. 2014, 396, 54–61. DOI: 10.1016/j.carres.2014.07.015.
  • Venu, S.; Naik, D. B.; Sarkar, S. K.; Aravind, U. K.; Nijamudheen, A.; Aravindakumar, C. T. Oxidation Reactions of Thymol: A Pulse Radiolysis and Theoretical Study. J. Phys. Chem. A 2013, 117, 291–299. DOI: 10.1021/jp3082358.
  • Trang, D. H. T.; Son, H. L.; Trung, P. V. Investigation on the in Vitro Antioxidant Capacity of Methanol Extract, Fractions and Flavones from Oroxylum Indicum Linn Bark. Braz. J. Pharm. Sci. 2018, 54, 17178–17183. DOI: 10.1590/s2175-97902018000117178.
  • Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531–559. DOI: 10.3390/biom9100531.
  • Nikolic, I. L.; Savic, I. M.; Popsavin, M. M.; Rakic, S. J.; Mihajilov-Krstev, T. M.; Ristic, I. S.; Eric, S. P.; Savic-Gajic, I. M. Preparation, Characterization and Antimicrobial Activity of Inclusion Complex of Biochanin a with (2-Hydroxypropyl)-β-Cyclodextrin. J. Pharm. Pharmacol. 2018, 70, 1485–1493. DOI: 10.1111/jphp.13003.
  • Rajamani, T.; Muthu, S. Electronic Absorption, Vibrational Spectra, Non-Linear Optical Properties, NBO Analysis and Thermodynamic Properties of 9-[(2-Hydroxyethoxy) Methyl] Guanine Molecule by Density Functional Method. Solid State Sci. 2013, 16, 90–101. DOI: 10.1016/j.solidstatesciences.2012.10.023.
  • Barim, E.; Akman, F. Synthesis, Characterization and Spectroscopic Investigation of N-(2-Acetylbenzofuran-3-yl)Acrylamide Monomer: Molecular Structure, HOMO- LUMO Study, TD-DFT and MEP Analysis. J. Mol. Struct. 2019, 1195, 506–513. DOI: 10.1016/j.molstruc.2019.06.015.
  • Sakthivel, S.; Alagesan, T.; Muthu, S.; Abraham, C. S.; Geetha, E. Quantum Mechanical, Spectroscopic Study (FT-IR and FT-Raman), NBO Analysis, HOMO-LUMO, First Order Hyperpolarizability and Docking Studies of a Nonsteroidal anti-Inflammatory Compound. J. Mol. Struct. 2018, 1156, 645–656. DOI: 10.1016/j.molstruc.2017.12.024.
  • Prabhu, A. A. M.; Madi, F.; Leila, N.; Suresh Kumar, G. S.; Sathiyaseelan, K. Structural Aspects and Stability of Interactions between Phenyl-3,3’-Bis(Indolyl)Methanes and β-Cyclodextrin from Density Functional Theory. Poly. Arom. Comp. 2023, 43, 5276–5298. DOI: 10.1080/10406638.2022.2101490.
  • Schmider, H. L.; Becke, A. D. Chemical Content of the Kinetic Energy Density. J. Mol. Struct. 2000, 527, 51–61. DOI: 10.1016/S0166-1280(00)00477-2.
  • Velde, G. t.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. DOI: 10.1002/jcc.1056.
  • Yahia, H. A.; Yahia, O. A.; Khatmi, D. E.; Belghiche, R.; Bouzitouna, A. Quantum Chemical Investigations on Hydrogen Bonding Interactions Established in the Inclusion Complex β-Cyclodextrin/Benzocaine through the DFT, AIM and NBO Approaches. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 353–365. DOI: 10.1007/s10847-017-0753-1.
  • Venkataramanan, N. S.; Suvitha, A.; Kawazoe, Y. Density Functional Theory Study on the Dihydrogen Bond Cooperativity in the Growth Behavior of Dimethyl Sulfoxide Clusters. J. Mol. Liq. 2018, 249, 454–462. DOI: 10.1016/j.molliq.2017.11.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.