76
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the Effect of Fixation Tension on the Thermal Analysis Process and Crystal Structure of Polyacrylonitrile (PAN) Fibers

, , , , & ORCID Icon
Pages 570-587 | Received 08 Jul 2023, Accepted 20 Oct 2023, Published online: 08 Nov 2023

References

  • Li, X.; Li, Z.; Dang, X.; Luan, D.; Wang, F.; Chen, H.; Wang, C. Structural and Thermal Property Changes of Plasticized Spinning Polyacrylonitrile Fibers under Different Spinning Speeds. J. Appl. Polym. Sci. 2017, 134, 45267. DOI: 10.1002/app.45267.
  • Wang, Y.; Yan, T.; Wu, S.; Tong, Y. J.; Gao, A. J.; Xu, L. H Stretching Deformation Mechanism of Polyacrylonitrile-Based Carbon Fiber Structure at High Temperatures. Fibers Polym. 2018, 19, 751–759. DOI: 10.1007/s12221–018–7988–3.
  • Cui, Y.; Hua, X.; Liu, L. Z.; Li, S.; Shi, Y. Evaluating Polyacrylonitrile Precursor Structure Effects on Carbon Fiber Production. Polym. Bull. 2023, 80, 8321–8338. DOI: 10.1007/s00289–022–04451–4.
  • Zhang, W.; Wang, M.; Cheng, L.; Wu, G. Radiation Assisted Pre-Oxidation of Polyacrylonitrile Fiber: Graphite Formation and Lower Crystal Size Revealed by 2D WAXD at a Synchrotron Facility. Polym. Degrad. Stabil. 2020, 179, 109264. DOI: 10.1016/j.polymdegradstab.2020.109264.
  • Zhao, G.; Liu, J.; Xu, L.; Guo, S. Study on Structure Evolution and Reaction Mechanism in Microwave Pre-Oxidation. J. Inorg. Organomet. Polym. 2021, 31, 3562–3571. DOI: 10.1007/s10904–021–01958–7.
  • Sun, T.; Hou, Y.; Wang, H. Mass DSC/TG and IR Ascertained Structure and Color Change of Polyacrylonitrile Fibers in Air/Nitrogen during Thermal Stabilization. J. Appl. Polym. Sci. 2010, 118, 462–468. DOI: 10.1002/app.32175.
  • Li, X.; Qin, A.; Zhao, X.; Liu, D.; Wang, H.; He, C. Drawing Dependent Structures, Mechanical Properties and Cyclization Behaviors of Polyacrylonitrile and Polyacrylonitrile/Carbon Nanotube Composite Fibers Prepared by Plasticized Spinning. Phys. Chem. Chem. Phys. 2015, 17, 21856–21865. DOI: 10.1039/C5CP02498F.
  • Jin, D.; Huang, Y.; Liu, X.; Yu, Y. The Influences of Silicone Finishes on Thermooxidative Stabilization of PAN Precursor Fibers. J. Mater. Sci. 2004, 39, 3365–3368. DOI: 10.1023/B:JMSC.0000026937.66268.9f.
  • Furushima, Y.; Kumazawa, R.; Yamaguchi, Y.; Hirota, N.; Sawada, K.; Nakada, M.; Murakami, M. Precursory Reaction of Thermal Cyclization for Polyacrylonitrile. Polymer 2021, 226, 123780. DOI: 10.1016/j.polymer.2021.123780.
  • Nunna, S.; Maghe, M.; Fakhrhoseini, S. M.; Polisetti, B.; Naebe, M. A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production. Energies 2018, 11, 1145. DOI: 10.3390/en11051145.
  • Hou, Y.; Sun, T.; Wang, H.; Wu, D. Wu D Thermal-Shrinkage Investigation of the Chemical Reaction during the Stabilization of Polyacrylonitrile Fibers. J. Appl. Polym. Sci. 2009, 114, 3668–3672. DOI: 10.1002/app.30303.
  • Elagib, T. H.; Hassan, E. A.; Liu, B.; Han, K.; Yu, M. Evaluation of Composite PAN Fibers Incorporated with Carbon Nanotubes and Titania and Their Performance during the Microwave-Induced Pre-Oxidation. Carbon Lett. 2020, 30, 235–245. DOI: 10.1007/s42823–019–00092–2.
  • Chawla, S.; Cai, J.; Naraghi, M. Mechanical Tests on Individual Carbon Nanofibers Reveals the Strong Effect of Graphitic Alignment Achieved via Precursor Hot-Drawing. Carbon 2017, 117, 208–219. DOI: 10.1016/j.carbon.2017.02.095.
  • Zhang, H.; Quan, L.; Gao, A.; Tong, Y.; Shi, F.; Xu, L. Thermal Analysis and Crystal Structure of Poly (Acrylonitrile-co-Itaconic Acid) Copolymers Synthesized in Water. Polymers 2020, 12, 221. DOI: 10.3390/polym12010221.
  • Zeng, Z. P.; Shao, Z. C.; Xiao, R.; Lu, Y. G. Structure Evolution Mechanism of Poly (Acrylonitrile/Itaconic Acid/Acrylamide) during Thermal Oxidative Stabilization Process. Chin. J. Polym. Sci. 2017, 35, 1020–1034. DOI: 10.1007/s10118–017–1945–2.
  • Qiao, M.; Kong, H.; Ding, X.; Zhang, L.; Yu, M. Effect of Graphene Oxide Coatings on the Structure of Polyacrylonitrile Fibers during Pre-Oxidation Process. RSC Adv. 2019, 9, 28146–28152. DOI: 10.1039/C9RA04732H.
  • Liu, H.; Zhang, S.; Yang, J.; Ji, M.; Yu, J.; Wang, M.; Chai, X.; Yang, B.; Zhu, C.; Xu, J. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. Polymers 2019, 11, 1150. DOI: 10.3390/polym11071150.
  • Ouyang, Q.; Cheng, L.; Wang, H.; Li, K. D. Study of Stabilization Reactions in Poly (Acrylonitrile-co-Itaconic Acid) with Peak-Resolving Method. J. Therm. Anal. Calorim. 2008, 94, 85–88. DOI: 10.1007/s10973–007–8773–5.
  • Wang, B.; Li, C.; Cao, W. Effect of Polyacrylonitrile Precursor Orientation on the Structures and Properties of Thermally Stabilized Carbon Fiber. Materials 2021, 14, 3237. DOI: 10.3390/ma14123237.
  • Wu, S.; Gao, A.; Xu, L. Effect of In Situ Thermal Stretching during Oxidative Stabilization on the Orientation of Cyclized Ladder Structure and Its Carbon Fiber. Fibers Polym. 2018, 19, 1184–1193. DOI: 10.1007/s12221–018–7697-y.
  • Li, X. Y.; Tian, F.; Gao, X. P.; Bian, F. G.; Li, X. H.; Wang, J. WAXD/SAXS Study and 2D Fitting (SAXS) of the Microstructural Evolution of PAN-Based Carbon Fibers during the Pre-Oxidation and Carbonization Process. New Carbon Mater. 2017, 32, 130–136. DOI: 10.1016/S1872–5805(17)60110–0.
  • Yu, M.; Wang, C.; Bai, Y.; Wang, Y.; Zhu, B. Evolution of Tension during the Thermal Stabilization of Polyacrylonitrile Fibers under Different Parameters. J. Appl. Polym. Sci. 2006, 102, 5500–5506. DOI: 10.1002/app.23960.
  • Zhu, C. Z.; Yu, X. L.; Liu, X. F.; Mao, Y. Z.; Liu, R. G.; Zhao, N.; Zhang, X.; Xu, J. 2D SAXS/WAXD Analysis of PAN Carbon Fiber Microstructure in Organic/Inorganic Transformation. Chin. J. Polym. Sci. 2013, 31, 823–832. DOI: 10.1007/s10118–013–1272–1.
  • Li, X.; Ji, X.; Qin, A.; He, C. The Plasticized Spinning and Cyclization Behaviors of Functionalized Carbon Nanotube/Polyacrylonitrile Fibers. RSC Adv. 2015, 5, 52226–52234. DOI: 10.1039/C5RA05696A.
  • Wang, T. Y.; Chang, H. C.; Chiu, Y. T.; Tsai, J. L. The Index of Dry-Jet Wet Spinning for Polyacrylonitrile Precursor Fibers. J. Appl. Polym. Sci. 2015, 132, 1–10. DOI: 10.1002/app.41265.
  • Ouyang, Q.; Chen, Y.; Wang, X.; Ma, H.; Li, D.; Yang, J. Supramolecular Structure of Highly Oriented Wet-Spun Polyacrylonitrile Fibers Used in the Preparation of High-Performance Carbon Fibers. J. Polym. Res. 2015, 22, 1–10. DOI: 10.1007/s10965–015–0865–5.
  • Gao, Q.; Jing, M.; Wang, C.; Chen, M.; Zhao, S.; Qin, J.; Wang, W. Fibril Microstructural Changes of Polyacrylonitrile Fibers during the Post-Spinning Process. Colloid Polym. Sci. 2018, 296, 1307–1311. DOI: 10.1007/s00396–018–4350–7.
  • Ji, M.; Wang, C.; Bai, Y.; Yu, M.; Wang, Y. Structural Evolution of Polyacrylonitrile Precursor Fibers during Preoxidation and Carbonization. Polym. Bull. 2007, 59, 527–536. DOI: 10.1007/s00289–007–0796–3.
  • He, B. B. Introduction to two-dimensional X-ray diffraction. Powder Diffr. 2003, 18, 71–85. DOI: 10.1154/1.1577355.
  • He, B. B. Two-Dimensional X-ray Diffraction; John Wiley & Sons: New York, USA, 2018. DOI: 10.1002/9780470502648.
  • Wang, B.; Li, C.; Cao, W. Effect of Stretching on the Orientation Structure and Reaction Behavior of PAN Fiber during the Thermal Stabilization. Mater. Res. Express 2021, 8, 085603. DOI: 10.1088/2053–1591/ac19e9.
  • Liu, Y.; Huang, X.; Liu, J.; Liang, J.; Wang, X. Structure and Tensile Properties of Carbon Fibers Based on Electron-Beam Irradiated Polyacrylonitrile Fibers. J. Mater. Sci. 2020, 55, 4962–4969. DOI: 10.1007/s10853–019–04182–4.
  • Sun, L.; Shang, L.; Xiao, L.; Zhang, M.; Ao, Y.; Li, M. The Influence of Stabilization Efficiency on Skin-Core Structure and Properties of Polyacrylonitrile Fibers. J. Mater. Sci. 2020, 55, 3408–3418. DOI: 10.1007/s10853–019–04257–2.
  • Yang, F.; Liu, W.; Yi, M.; Ran, L.; Ge, Y.; Peng, K. Effect of High Temperature Treatment on the Microstructure and Elastoplastic Properties of Polyacrylonitrile-Based Carbon Fibers. Carbon 2020, 158, 783–794. DOI: 10.1016/j.carbon.2019.11.055.
  • Chen, L.; Hao, L.; Liu, S.; Ding, G.; Sun, X.; Zhang, W.; Li, F.; Jiao, W.; Yang, F.; Xu, Z.; et al. Modulus Distribution in Polyacrylonitrile-Based Carbon Fiber Monofilaments. Carbon 2020, 157, 47–54. DOI: 10.1016/j.carbon.2019.09.084.
  • Gao, Q.; Jing, M.; Wang, C.; Zhao, S.; Chen, M.; Qin, J. Preparation of High-Quality Polyacrylonitrile Precursors for Carbon Fibers through a High Drawing Ratio in the Coagulation Bath during a Dry-Jet Wet Spinning Process. J. Macromol. Sci. Part B Phys. 2019, 58, 128–140. DOI: 10.1080/00222348.2018.1548074.
  • Thunemann, A. F.; Ruland, W. Microvoids in Polyacrylonitrile Fibers: A Small-Angle X-Ray Scattering Study. Macromolecules 2000, 33, 1848–1852. DOI: 10.1021/ma991427x.
  • Gupta, A.; Harrison, I. R. New Aspects in the Oxidative Stabilization of Pan-Based Carbon Fibers. Carbon 1996, 34, 1427–1445. DOI: 10.1016/S0008–6223(96)00094–2.
  • Zhou, Y.; Sha, Y.; Liu, W.; Gao, T.; Yao, Z.; Zhang, Y.; Cao, W. Hierarchical Radial Structure of Polyacrylonitrile Precursor Formed during the Wet-Spinning Process. RSC Adv. 2019, 9, 17051–17056. DOI: 10.1039/C9RA02125F.
  • Liu, Y.; Chae, H. G.; Kumar, S. Gel-Spun Carbon Nanotubes/Polyacrylonitrile Composite Fibers. Part III: Effect of Stabilization Conditions on Carbon Fiber Properties. Carbon 2011, 49, 4487–4496. DOI: 10.1016/j.carbon.2011.06.045.
  • Fitzer, E.; Frohs, W.; Heine, M. Optimization of Stabilization and Carbonization Treatment of PAN Fibres and Structural Characterization of the Resulting Carbon Fibres. Carbon 1986, 24, 387–395. DOI: 10.1016/0008–6223(86)90257–5.
  • Lee, J. E.; Chae, Y. K.; Lee, D. J.; Choi, J.; Chae, H. G.; Kim, T. H.; Lee, S. Microstructural Evolution of Polyacrylonitrile Fibers during Industry-Mimicking Continuous Stabilization. Carbon 2022, 195, 165–173. DOI: 10.1016/j.carbon.2022.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.