181
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Continuous time graph processes with known ERGM equilibria: contextual review, extensions, and synthesis

ORCID Icon
Pages 129-171 | Received 14 Mar 2022, Accepted 17 Oct 2022, Published online: 27 Feb 2023

References

  • Almquist, Z. W., & Butts, C. T. (2013). Dynamic network logistic regression: A logistic choice analysis of inter- and intra-group blog citation dynamics in the 2004 US presidential election. Political Analysis, 21, 430–448.
  • Baker, W. E. (1984). The social structure of a national securities market. The American Journal of Sociology, 89(4), 755–811.
  • Block, P., Stadtfeld, C., & Snijders, T. A. B. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48, 202–239.
  • Börgers, T., & Sarin, R. (1997). Learning through reinforcement and replicator dynamics. Journal of Economic Theory, 77(1), 1–14.
  • Burk, W. J., Steglich, C. E. G., & Snijders, T. A. B. (2007). Beyond dyadic interdependence: Actor-oriented models for co-evolving social networks and individual behaviors. International Journal of Behavioral Development, 31(4), 397–404.
  • Burt, R. S. (2000). Decay functions. Social Networks, 22(1), 1–28.
  • Burt, R. S. (2002). Bridge decay. Social Networks, 24(4), 333–363.
  • Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38(1), 155–200.
  • Butts, C. T. (2009). A behavioral micro-foundation for cross-sectional network models. ASA Annual Meeting Presentation.
  • Butts, C. T. (2018). A perfect sampling method for exponential family random graph models. The Journal of Mathematical Sociology, 42(1), 17–36.
  • Butts, C. T. (2019). A dynamic process interpretation of the sparse ERGM reference model. The Journal of Mathematical Sociology, 43(1), 40–57.
  • Butts, C. T. (2020). A dynamic process reference model for sparse networks with reciprocity. The Journal of Mathematical Sociology.
  • Butts, C. T. (2021). Phase transitions in the edge/concurrent vertex model. The Journal of Mathematical Sociology, 43(3), 135–147.
  • Butts, C. T., et al. (2017). Actor orientation and relational event models: A comment on Stadtfeld. Sociological Methodology, 47, 47–56.
  • Butts, C. T., & Almquist, Z. W. (2015). A flexible parameterization for baseline mean degree in multiple-network ERGMs. The Journal of Mathematical Sociology, 39(3), 163–167.
  • Byshkin, M., Stivala, A., Mira, A., Krause, R., Robins, G., & Lomi, A. (2016). Auxiliary parameter MCMC for exponential random graph models. Journal of Statistical Physics, 165(4), 740–754.
  • Carley, K. M. (1991). A theory of group stability. American Sociological Review, 56(3), 331–354.
  • Carnegie, N. B., Krivitsky, P. N., Hunter, D. R., & Goodreau, S. M. (2015). An approximation method for improving dynamic network model fitting. Journal of Computational and Graphical Statistics, 24(2), 502–519.
  • Cox, D. R. (1972). Regression models in life tables (with discussion). Journal of the Royal Statistical Society, Series B, 34, 187–220.
  • Crouch, B., Wasserman, S., & Trachtenburg, F. (1998). Markov chain Monte Carlo maximum likelihood estimation for p* social network models.
  • de la Haye, K., Robins, G., Mohr, P., & Wilson, C. (2011). Homophily and contagion as explanations for weight similarities among adolescent friends. Journal of Adolescent Health, 49(4), 421–427.
  • Desmarais, B., & Cranmer, S. (2012). Statistical mechanics of networks: Estimation and uncertainty. Physica A: Statistical Mechanics and Its Applications, 391(4), 1865–1876.
  • Diesser, E. M., Freites, J. A., Tobias, D. J., & Butts, C. T. (2023). Network Hamiltonian models for unstructured protein aggregates, with application to γD-crystallin. The Journal of Physical Chemistry B, 127(3), 685–697.
  • Feld, S. (1981). The focused organization of social ties. The American Journal of Sociology, 1015–1035. 1986.
  • Freeman, L. C., Freeman, S. C., & Michaelson, A. G. (1988). On human social intelligence. Journal of Social and Biological Structure, 11, 415–425.
  • Gibson, C. B., & Butts, C. T. (2023). Effects of temporal resolution adjustments on dynamic sexual contact models. Social Networks, 73, 104–113.
  • Grazioli, G., Yu, Y., Unhelkar, M. H., Martin, R. W., & Butts, C. T. (2019). Network-based classification and modeling of amyloid fibrils. The Journal of Physical Chemistry B, 123(26), 5452–5462.
  • Grimmett, G. R., & Stirzaker, D. R. (1992). Probability and Random Processes. Clarendon Press.
  • Häggström, O., & Jonasson, J. (1999). Phase transition in the random triangle model. Journal of Applied Probability, 36, 1101–1115.
  • Handcock, M. S. (2003). Statistical models for social networks: Inference and degeneracy. In R. Breiger, K. M. Carley, & P. Pattison (Eds.), Dynamic Social Network Modeling and Analysis (pp. 229–240). National Academies Press.
  • Handcock, M. S., & Gile, K. J. (2010). Modeling networks with sampled data. The Annals of Applied Statistics, 4(1), 5–25.
  • Hanneke, S., & Xing, E. P. (2007). Discrete temporal models of social networks. In E. M. Airoldi & E. an Stephen. D. M. B. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng, Eds., Statistical Network Analysis: Models, Issues, and New Directions: ICML 2006 Workshop on Statistical Network Analysis, Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers, volume 4503 of Lecture Notes in Computer Science, pages 115–125. Springer-Verlag.
  • Hoffman, M., Block, P., Elmer, T., & Stadtfeld, C. (2020). A model for the dynamics of face-to-face interactions in social groups. Network Science, 8(S1), S4–25.
  • Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks. The Journal of Mathematical Sociology, 5(1), 5–20.
  • Hummon, N. P., & Fararo, T. J. (1995). Actors and networks as objects. Social Networks, 17, 1–26.
  • Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). Ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software, 24(3).
  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.
  • Katz, L., & Proctor, C. H. (1959). The concept of configuration of interpersonal relations in a group as a time-dependent stochastic process. Psychometrika, 24, 317–327.
  • Klumb, C., Goodreau, S., & Morris, M. (2022). Revisiting the edges dissolution approximation. Working Paper, University of Washington.
  • Koskinen, J., Caimo, A., & Lomi, A. (2015). Simultaneous modeling of initial conditions and time heterogeneity in dynamic networks: An application to foreign direct investments. Network Science, 3(1), 58–77.
  • Koskinen, J. H., Robins, G. L., Wang, P., & Pattison, P. E. (2013). Bayesian analysis for partially observed network data, missing ties, attributes and actors. Social Networks, 35(4), 514–527.
  • Koskinen, J. H., & Snijders, T. A. (2007). Bayesian inference for dynamic social network data. Journal of Statistical Planning and Inference, 137(12): 3930–3938. 5th St. Petersburg Workshop on Simulation, Part {II}
  • Krivitsky, P. N. (2012a). Exponential-family random graph models for valued networks. Electronic Journal of Statistics, 6, 1100–1128.
  • Krivitsky, P. N. (2012b). Modeling of dynamic networks based on egocentric data with durational information. Upenn Department of Statistics: Technical Reports and Preprints, 12(1), 1–32.
  • Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of the Royal Statistical Society, Series B, 76(1), 29–46.
  • Krivitsky, P. N., Handcock, M. S., & Morris, M. (2011). Adjusting for network size and composition effects in exponential-family random graph models. Statistical Methodology, 8(4), 319–339.
  • Krivitsky, P. N., & Kolaczyk, E. D. (2015). On the question of effective sample size in network modeling: An asymptotic inquiry. Statistical Science, 30, 184–198.
  • Krivitsky, P. N., & Morris, M. (2017). Inference for social network models from egocentrically sampled data, with application to understanding persistent racial disparities in HIV prevalence in the US. The Annals of Applied Statistics, 11(1), 427–455.
  • Lawson, B. G., & Park, S. (2000). Asynchronous time evolution in an artificial society model. Journal of Artificial Societies and Social Simulation, 3(1).
  • Lerner, J., Indlekofer, N., Nick, B., & Brandes, U. (2013). Conditional independence in dynamic networks. Journal of Mathematical Psychology, 57(6), 275–283.
  • Lospinoso, J., & Snijders, T. A. (2019). Goodness of fit for stochastic actor-oriented models. Methodological Innovations, 12(3), 2059799119884282.
  • Lusher, D., Koskinen, J., & Robins, G. (2012). Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. Cambridge University Press.
  • Lütkepohl, H. (1993). Introduction to Multivariate Time Series Analysis. Springer-Verlag.
  • Mayhew, B. H. (1984). Chance and necessity in sociological theory. The Journal of Mathematical Sociology, 9, 305–339.
  • Mele, A. (2010). A structural model of segregation in social networks. NET Institute Working Paper No. 10-16.
  • Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3), 825–850.
  • Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: Terms and computational aspects. Journal of Statistical Software, 24(4), 1–24.
  • Morris, M., Kurth, A. E., Hamilton, D. T., Moody, J., & Wakefield, S. (2009). Concurrent partnerships and HIV prevalence disparities by race: Linking science and public health practice. American Journal of Public Health, 99(6), 1023–1031.
  • Niezink, N. M. D., & Snijders, T. A. B. (2017). Co-evolution of social networks and continuous actor attributes. The Annals of Applied Statistics, 11, 1948–1973.
  • Park, J., & Newman, M. (2004). Solution of the 2-star model of a network. Physical Review E, 70, 066146.
  • Perry, P. O., & Wolfe, P. J. (2013). Point process modelling for directed interaction networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75, 821–849.
  • Radin, C., & Yin, M. (2013). Phase transitions in exponential random graphs. Annals of Applied Probability, 23(6), 2458–2471.
  • Robins, G. L., & Pattison, P. E. (2001). Random graph models for temporal processes in social networks. The Journal of Mathematical Sociology, 25, 5–41.
  • Robins, G. L., Pattison, P. E., & Woolcock, J. (2005). Small and other worlds: Network structures from local processes. The American Journal of Sociology, 110(4), 894–936.
  • Schaefer, D. R., & Kreager, D. A. (2020). New on the block: Analyzing network selection trajectories in a prison treatment program. American Sociological Review, 85(4), 709–737.
  • Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. Journal of the American Statistical Association.
  • Schweinberger, M., Krivitsky, P. N., Butts, C. T., & Stewart, J. (2020). Exponential-family models of random graphs: Inference in finite-, super-, and infinite-population scenarios. Statistical Science, 35(4), 627–662.
  • Schweinberger, M., & Snijders, T. A. B. (2007). Markov models for digraph panel data: Monte Carlo-based derivative estimation. Computational Statistics & Data Analysis, 51, 4465–4483.
  • Sijtsema, J. J., Ojanen, T., Veenstra, R., Lindenberg, S., Hawley, P. H., & Little, T. D. (2010). Forms and functions of aggression in adolescent friendship selection and influence: A longitudinal social network analysis. Social Development, 19(3), 515–534.
  • Skvoretz, J. (1985). Random and biased networks: Simulations and approximations. Social Networks, 7, 256–261.
  • Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change. The Journal of Mathematical Sociology, 23, 149–172.
  • Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31, 361–395.
  • Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3(2).
  • Snijders, T. A. B., & Duijn, M. A. J. V. (1997). Simulation for statistical inference in dynamic network models. In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating Social Phenomena (pp. 493–512). Springer.
  • Snijders, T. A. B., Koskinen, J., & Schweinberger, M. (2010). Maximum likelihood estimation for social network dynamics. The Annals of Applied Statistics, 4, 567–588.
  • Stadtfeld, C. (2012). Events in Social Networks: A Stochastic Actor-oriented Framework for Dynamic Event Processes in Social Networks. KIT Scientific Publishing.
  • Stadtfeld, C., Hollway, J., & Block, P. (2017). Dynamic network actor models: Investigating coordination ties through time. Sociological Methodology, 47(1), 1–40.
  • Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329–393.
  • Stivala, A. D., Koskinen, J. H., Rolls, D. A., Wang, P., & Robins, G. L. (2016). Snowball sampling for estimating exponential random graph models for large networks. Social Networks, 47, 167–188.
  • Strauss, D. (1986). On a general class of models for interaction. SIAM Review, 28(4), 513–527.
  • Vu, D., Asuncion, A., Hunter, D., & Smyth, P. (2011a). Dynamic egocentric models for citation networks. In Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pages 857–864. International Machine Learning Society.
  • Vu, D., Asuncion, A., Hunter, D., & Smyth, P. (2011b). Dynamic egocentric models for citation networks. In Proceedings of the 2011 International Conference on Neural Information Processing Systems (NIPS).
  • Wang, J., & Atchadé, Y. F. (2014). Approximate Bayesian computation for exponential random graph models for large social networks. Communications in Statistics-Simulation and Computation, 43(2), 359–377.
  • Wasserman, S. S. (1980). A stochastic model for directed graphs with transition rates determined by reciprocity. Sociological Methodology, 11, 392–412.
  • Weerman, F. M. (2011). Delinquent peers in context: A longitudinal network analysis of selection and influence effects. Criminology, 49(1), 253–286.
  • Young, H. P. (1998). Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press.
  • Yu, Y., Grazioli, G., Unhelkar, M., Martin, R. W., & Butts, C. T. (2020). Network Hamiltonian models reveal pathways to amyloid fibril formation. Nature Scientific Reports, 10, 15668.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.