75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Artificial Intelligence Detection System of Radioactive Nanocomposites in Liquid-Filled Containers for Nuclear Security

&
Pages 868-883 | Received 15 Jun 2022, Accepted 17 Aug 2023, Published online: 10 Oct 2023

References

  • J. MEDALIA, Detection of Nuclear Weapons and Materials: Science, Technologies, Observations, DIANE Publishing (2010).
  • J. M. HALL et al., “The Nuclear Car Wash: Neutron Interrogation of Cargo Containers to Detect Hidden SNM,” Nucl. Instrum. Methods Phys. Res., Sect. B, 261, 337 (2007); http://dx.doi.org/10.1016/j.nimb.2007.04.263.
  • M. ALAMANIOTIS et al., “Intelligent Detection of SNM in Liquid Containers,” presented at the 2009 16th Int. Conf. on Systems, Signals, and Image Processing, p. 1, Institute of Electrical and Electronics Engineers (2009).
  • J. YOUNG, M. ALAMANIOTIS, and L. H. TSOUKALAS, “Fuzzy Logic Detection of Special Nuclear Materials in Aqueous Environments,” presented at the American Nuclear Society Student Conf. (Apr. 2012).
  • A. A. DIAZ et al., “Non-Invasive Ultrasonic Instrument for Counter-Terrorism and Drug Interdiction Operations—The Acoustic Inspection Device (AID),” Proc. 20th IEEE Instrumentation Technology Conf. (Catalog no. 03CH37412), p. 1275, Institute of Electrical and Electronics Engineers (2003).
  • W. BERTOZZI et al., “Nuclear Resonance Fluorescence and Effective Z Determination Applied to Detection and Imaging of Special Nuclear Material, Explosives, Toxic Substances and Contraband,” Nucl. Instrum. Methods Phys. Res., Sect. B, 261, 331 (2007); http://dx.doi.org/10.1016/j.nimb.2007.04.109.
  • NATIONAL RESEARCH COUNCIL, COMMITTEE ON CHALLENGES FOR THE CHEMICAL SCIENCES IN THE 21ST, BEYOND THE MOLECULAR FRONTIER, Challenges for Chemistry and Chemical Engineering, National Academies Press (2003).
  • M. ALAMANIOTIS et al., “Engineering Solution to Nuclear Material Detection at Ports: Introducing the Novel Imass Paradigm,” presented at the 2009 21st IEEE Int. Conf. on Tools with Artificial Intelligence, p. 679, Institute of Electrical and Electronics Engineers (2009).
  • NATIONAL RESEARCH COUNCIL, COMMITTEE ON IMPROVING THE SCIENTIFIC BASIS FOR MANAGING NUCLEAR MATERIALS AND SPENT NUCLEAR FUEL THROUGH THE ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM, Improving the Scientific Basis for Managing DOE’s Excess Nuclear Materials and Spent Nuclear Fuel, National Academies Press (2003).
  • H. R. YOSHIMURA, J. S. LUDWIGSEN, and M. MCALLASTER, “Use of Depleted Uranium Metal as Cask Shielding in High-Level Waste Storage, Transport, and Disposal Systems,” Sandia National Laboratories (1996).
  • A. NOMINE et al., Physical Metallurgy of Uranium Alloys: Third Army Materials Technology Conference, Brook Hill Publishing Company (1974).
  • C. T. OLOFSON, G. E. MEYER, and A. L. HOFFMANNER, “Processing and Applications of Depleted Uranium Alloy Products,” Metals and Ceramics Information Center, Columbus, Ohio (1976).
  • D. ABRAHAM et al., “Corrosion of Structural Materials by Lead-Based Reactor Coolants,” Argonne National Laboratory (2000).
  • E. ADAMOV and L. BOL’SHOV, “White Book of Nuclear Power Engineering,” M.: NIKIET (2001).
  • R. ODETTE and S. ZINKLE, Structural Alloys for Nuclear Energy Applications, Newnes (2019).
  • J. J. PARK and J. J. BUKSA, “Selection of Flowing Liquid Lead Target Structural Materials for Accelerator Driven Transmutation Applications,” AIP Conf. Proc., p. 512, American Institute of Physics (1995).
  • G. BELLANGER, Corrosion Induced by Low-Energy Radionuclides: Modeling of Tritium and Its Radiolytic and Decay Products Formed in Nuclear Installations, Elsevier (2004).
  • A. FLEITMAN, R. HERCHENROEDER, and J. CHOW, “Cobalt-Base Alloys for Use in Nuclear Reactors,” Nucl. Eng. Des., 15, 345 (1971); http://dx.doi.org/10.1016/0029-5493(71)90074-4.
  • R. LIU et al., “Relations of Chemical Composition to Solidification Behavior and Associated Microstructure of Stellite Alloys,” Metall. Microstruct. Anal., 4, 146 (2015); http://dx.doi.org/10.1007/s13632-015-0196-2.
  • M. RIDDIHOUGH, “Stellite as a Wear-Resistant Material,” Tribology, 3, 211 (1970); http://dx.doi.org/10.1016/0041-2678(70)90058-8.
  • B. ADE et al., “Safety and Regulatory Issues of the Thorium Fuel Cycle,” Oak Ridge National Laboratory (2014).
  • U. E. HUMPHREY and M. U. KHANDAKER, “Viability of Thorium-Based Nuclear Fuel Cycle for the Next Generation Nuclear Reactor: Issues and Prospects,” Renewable Sustainable Energy Rev., 97, 259 (2018); http://dx.doi.org/10.1016/j.rser.2018.08.019.
  • K. L. KELLY et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, pp. 668–677, ACS Publications (2003).
  • A. SUREKA and V. SANTHANAM, “Optical Properties of Metal Nanoparticles Using DDA,” J. Young Invest., 25, 66 (2013).
  • H. SHI, M. CHU, and P. ZHANG, “Optical Properties of UO2 and PuO2,” J. Nucl. Mater., 400, 151 (2010); http://dx.doi.org/10.1016/j.jnucmat.2010.02.024.
  • S. SINGH et al., “Ab-Initio Calculation on Electronic and Optical Properties of ThO2, UO2 and PuO2,” J. Nucl. Mater., 511, 128 (2018); http://dx.doi.org/10.1016/j.jnucmat.2018.08.055.
  • F. CHEN and R. JOHNSTON, “Structure and Spectral Characteristics of the Nanoalloy Ag3 Au10,” Appl. Phys. Lett., 90, 153123 (2007); http://dx.doi.org/10.1063/1.2722702.
  • V. AMENDOLA et al., “Surface Plasmon Resonance in Gold Nanoparticles: A Review,” J. Phys., 29, 203002 (2017).
  • X. HUANG, S. NERETINA, and M. A. EL‐SAYED, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater., 21, 4880 (2009); http://dx.doi.org/10.1002/adma.200802789.
  • M. KIM, J. H. LEE, and J. M. NAM, “Plasmonic Photothermal Nanoparticles for Biomedical Applications,” Adv. Sci., 6, 1900471 (2019); http://dx.doi.org/10.1002/advs.201900471.
  • E. POLO et al., “Colloidal Bioplasmonics,” Nano Today, 20, 58 (2018); http://dx.doi.org/10.1016/j.nantod.2018.04.003.
  • H. BANDEMER and S. GOTTWALD, Fuzzy Sets, Fuzzy Logic, Fuzzy Methods, Wiley Chichester (1995).
  • B. KOSKO and M. TOMS, Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion New York (1993).
  • R. LANGARI and J. YEN, Fuzzy Logic: Intelligence, Control, and Information, p. 548, 1ª ed., Prince Hall, New Jersey (1999).
  • R. TABER, “The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, and Maintaining Fuzzy Systems (Earl Cox),” SIAM Rev., 37, 281 (1995); http://dx.doi.org/10.1137/1037078.
  • M. ALAMANIOTIS et al., “A Multisignal Detection of Hazardous Materials for Homeland Security,” Nucl. Technol. Radiat. Prot., 24, 46 (2009); http://dx.doi.org/10.2298/NTRP0901046A.
  • G. MIE, “Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys., 330, 377 (1908); http://dx.doi.org/10.1002/andp.19083300302.
  • C. F. BOHREN and D. R. HUFFMAN, Absorption and Scattering of Light by Small Particles, John Wiley & Sons (2008).
  • H. VAN DE HULST, Light Scattering by Small Particles, John Wiley and Sons (Chapman and Hall) (1957).
  • T. J. ANTOSIEWICZ, S. P. APELL, and T. SHEGAI, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics, 1, 454 (2014); http://dx.doi.org/10.1021/ph500032d.
  • F. X. CHEN et al., “Design and Optimization of Ag-Dielectric Core-Shell Nanostructures for Silicon Solar Cells,” AIP Adv., 5, 097129 (2015); http://dx.doi.org/10.1063/1.4930957.
  • N. K. GRADY, N. J. HALAS, and P. NORDLANDER, “Influence of Dielectric Function Properties on the Optical Response of Plasmon Resonant Metallic Nanoparticles,” Chem. Phys. Lett., 399, 167 (2004); http://dx.doi.org/10.1016/j.cplett.2004.09.154.
  • H. XU, “Multilayered Metal Core-Shell Nanostructures for Inducing a Large and Tunable Local Optical Field,” Phys. Rev. B, 72, 073405 (2005); http://dx.doi.org/10.1103/PhysRevB.72.073405.
  • C. ZHANG et al., “Surface Plasmon Resonance in Bimetallic Core–Shell Nanoparticles,” J. Phys. Chem. C, 119, 16836 (2015); http://dx.doi.org/10.1021/acs.jpcc.5b04232.
  • Y. A. EREMIN, “Scattering|Scattering Theory,” Encyclopedia of Modern Optics, R. D. GUENTHER, Ed., pp. 326–330, Elsevier (2005).
  • B. D. GUENTHER and D. STEEL, Encyclopedia of Modern Optics, Academic Press (2018).
  • F. CHEN, N. ALEMU, and R. L. JOHNSTON, “Collective Plasmon Modes in a Compositionally Asymmetric Nanoparticle Dimer,” AIP Adv., 1, 032134 (2011); http://dx.doi.org/10.1063/1.3628346.
  • C. BOHREN and D. HUFFMAN, Absorption and Scattering of Light by Small Metal Nanoparticles, Wiley (1988).
  • G. V. HARTLAND, “Coherent Excitation of Vibrational Modes in Metallic Nanoparticles,” Annu. Rev. Phys. Chem., 57, 403 (2006); http://dx.doi.org/10.1146/annurev.physchem.57.032905.104533.
  • M. KERKER, The Scattering of Light and Other Electromagnetic Radiation: Physical Chemistry: A Series of Monographs, Academic Press (2013).
  • U. KREIBIG and M. VOLLMER, “Theoretical Considerations,” in Optical Properties of Metal Clusters, pp. 13–201, Springer (1995).
  • G. C. PAPAVASSILIOU, “Optical Properties of Small Inorganic and Organic Metal Particles,” Prog. Solid State Chem., 12, 185 (1979).
  • E. GHARIBSHAHI and M. ALAMANIOTIS, “Simulation and Modeling of Optical Properties of U, Th, Pb, and Co Nanoparticles of Interest to Nuclear Security Using Finite Element Analysis,” Nanomaterials, 12, 1710 (2022); http://dx.doi.org/10.3390/nano12101710.
  • E. GHARIBSHAHI and M. ALAMANIOTIS, “Modeling and Simulation of Radioactive Nanomaterials of Pb-U, Pb-Th, and Pb-Co in Water-Filled Containers for Nuclear Security Applications,” Nucl. Sci. Eng., 196, 1006 (2022); http://dx.doi.org/10.1080/00295639.2022.2035182.
  • L. A. ZADEH, “Information and Control,” Fuzzy Sets, 8, 338 (1965).
  • G. J. KLIR and B. YUAN, “Fuzzy Sets and Fuzzy Logic: Theory and Applications,” Possibility Theory Versus Probability Theory, 32, 207 (1996).
  • S. ROYCHOWDHURY and W. PEDRYCZ, “A Survey of Defuzzification Strategies,” Int. J. Intell. Syst., 16, 679 (2001); http://dx.doi.org/10.1002/int.1030.
  • B. KOSKO, Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence, Prentice Hall (1992).
  • T. J. ROSS, Fuzzy Logic with Engineering Applications, John Wiley & Sons (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.