Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 57, 2024 - Issue 3
57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic and computational studies of the biomolecular complex of chemotherapy drug, lomustine and a nucleotide base adenine

, , &
Pages 128-161 | Received 05 Dec 2023, Accepted 11 Mar 2024, Published online: 05 Apr 2024

References

  • Rasul, H. O.; Aziz, B. K.; Ghafour, D. D.; Kivrak, A. In Silico Molecular Docking and Dynamic Simulation of Eugenol Compounds Against Breast Cancer. Journal of Molecular Modeling 2022, 28(4), 78. DOI: 10.1007/s00894-021-05010-w.
  • Baskaran, C.; Ramachandran, M. Computational Molecular Docking Studies on Anticancer Drugs. Asian Pacific Journal of Tropical Disease 2012, 2, S734–S738. DOI: 10.1016/S2222-1808(12)60254-0.
  • Arjmand, B.; Hamidpour, S. K.; Moghadam, S. A.; Yavari, H.; Shahbazbadr, A.; Tavirani, M. R.; Gilany, K.; Larijani, B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Frontiers in Pharmacology 2022, 13, 768556. DOI: 10.3389/fphar.2022.768556.
  • Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical Effects of Curcumin in Enhancing Cancer Therapy: A Systematic Review. BMC Cancer 2020, 20(1), 791. DOI: 10.1186/s12885-020-07256-8.
  • Fisli, H.; Bensouilah, N.; Dhaoui, N.; Abdaoui, M. Effects of Solvent, pH and b-Cyclodextrin on the Fluorescent Behaviour of Lomustine. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2012, 73(1-4), 369–376. DOI: 10.1007/s10847-011-0073-9.
  • Sun, W.; She, M. Y.; Yang, Z.; Zhu, Y. L.; Ma, S. Y.; Shi, Z.; Li, J. L. Study on the Inclusion Behaviour and Solid Inclusion Complex of Lomustine with Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2016, 86(1-2), 45–54. DOI: 10.1007/s10847-016-0640-1.
  • Mehrotra, R.; Jangir, D. K.; Agarwal, S.; Ray, B.; Singh, P.; Srivastava, A. K. Interaction Studies of Anticancer Drug Lomustine with Calf Thymus DNA using Surface Enhanced Raman Spectroscopy. Mapan 2013, 28(4), 273–277. DOI: 10.1007/s12647-013-0086-5.
  • Hoey, R.; Sharpe, E.; Kukula, A.; Workman, P. Enhancing access to Innovative Cancer Drugs: Cross-Sector Consensus on a Way Forward to Benefit Patients. Drug Discovery Today 2022, 27(4), 946–950. DOI: 10.1016/j.drudis.2021.12.015.
  • Tsesmetzis, N.; Paulin, C. B. J.; Rudd, S. G.; Herold, N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers 2018, 10(7), 240. DOI: 10.3390/cancers10070240.
  • Chaurasiya, A.; Wahan, S. K.; Sahu, C.; Chawla, P. A. An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. Journal of Molecular Structure 2023, 1274, 134308. DOI: 10.1016/j.molstruc.2022.134308.
  • Chaurasiya, A.; Sahu, C.; Wahan, S. K.; Chawla, P. A. Targeting Cancer through Recently Developed Purine Clubbed Heterocyclic Scaffolds: An Overview. Journal of Molecular Structure 2023, 1280, 134967. DOI: 10.1016/j.molstruc.2023.134967.
  • Vignoli Muniz, G. S.; Mejía, C. F.; Martinez, R.; Auge, B.; Rothard, H.; Domaracka, A.; Boduch, P. Radioresistance of Adenine to Cosmic Rays. Astrobiology 2017, 17(4), 298–308. DOI: 10.1089/ast.2016.1488.
  • Han, M.; Cheng, X.; Gao, Z.; Zhao, R.; Zhang, S. Inhibition of Tumor Cell Growth by Adenine is Mediated by Apoptosis Induction and Cell Cycle S Phase Arrest. Oncotarget 2017, 8(55), 94286–94296. DOI: 10.18632/oncotarget.21690.
  • Lai, H. W.; Wei, J. C. C.; Hung, H. C.; Lin, C. C. Adenine Inhibits the Growth of Colon Cancer Cells via AMP-Activated Protein Kinase Mediated Autophagy. Evidence-Based Complementary and Alternative Medicine 2019, 2019, 9151070–9151077. DOI: 10.1155/2019/9151070.
  • Su, W. W.; Huang, J. Y.; Chen, H. M.; Lin, J. T.; Kao, S. H. Adenine Inhibits Growth of Hepatocellular Carcinoma Cells via AMPK-Mediated S Phase Arrest and Apoptotic Cascade. International Journal of Medical Sciences 2020, 17(5), 678–684. DOI: 10.7150/ijms.42086.
  • Huang, C. W.; Lin, Y. C.; Hung, C. H.; Chen, H. M.; Lin, J. T.; Wang, C. J.; Kao, S. H. Adenine Inhibits the Invasive Potential of DLD-1 Human Colorectal Cancer Cell via the AMPK/FAK Axis. Pharmaceuticals 2021, 14(9), 860. DOI: 10.3390/ph14090860.
  • Wu, F.; Xue, H.; Li, X.; Diao, W.; Jiang, B.; Wang, W.; Yu, W.; Bai, J.; Wang, Y.; Lian, B.; et al. Enhanced Targeted Delivery of Adenine to Hepatocellular Carcinoma using Glycyrrhetinic Acid-Functionalized Nanoparticles In Vivo and In Vitro. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 2020, 131, 110682. DOI: 10.1016/j.biopha.2020.110682.
  • Hammud, H. H.; Nemer, G.; Sawma, W.; Touma, J.; Barnabe, P.; Mouglabey, Y. B.; Ghannoum, A.; Hajjar, J. E.; Usta, J. Copper–Adenine Complex, A Compound, with Multi-Biochemical Targets and Potential Anti-Cancer Effect. Chemico-Biological Interactions 2008, 173(2), 84–96. DOI: 10.1016/j.cbi.2008.03.005.
  • Roye, Y.; Udeochu, U.; Ukaegbu, M.; Onuegbu, J. Spectroelectrochemical Investigation of the Interaction of Adenine with Pyridoxine at Physiological pH. Journal of Spectroscopy 2019, 2019, 1–12. DOI: 10.1155/2019/6979547.
  • Du, Y.; Fang, H. X.; Zhang, Q.; Zhang, H. L.; Hong, Z. Spectroscopic Investigation on Cocrystal Formation between Adenine and Fumaric Acid Based on Infrared and Raman Techniques. Spectrochimica Acta A 2016, 153, 580–585. DOI: 10.1016/j.saa.2015.09.020.
  • Sonia, C.; Devi, T. G.; Karlo, T. Spectroscopic and Computational Approach to Study the Interacting Mechanism of Drug-Adenine Complex. Spectroscopy Letters 2022, 55(9), 579–606. DOI: 10.1080/00387010.2022.2131826.
  • Agarwal, S.; Jangir, D. K.; Singh, P.; Mehrotra, R. Spectroscopic Analysis of the Interaction of Lomustine with Calf Thymus DNA. Journal of Photochemistry and Photobiology. B, Biology 2014, 130, 281–286. DOI: 10.1016/j.jphotobiol.2013.11.017.
  • Chobar, E. G.; Salimi, F.; Rajaei, G. E. Sensing of Lomustine Drug by Pure and Doped C48 Nanoclusters: DFT Calculations. Chemical Methodologies 2022, 6, 790–800. DOI: 10.22034/CHEMM.2022.344895.1555.
  • Giese, B.; McNaughton, D. Surface-Enhanced Raman Spectroscopic and Density Functional Theory Study of Adenine Adsorption to Silver Surfaces. The Journal of Physical Chemistry B 2002, 106(1), 101–112. DOI: 10.1021/jp010789f.
  • Lopes, R. P.; Valero, R.; Tomkinson, J.; Marques, M. P. M.; Carvalho, L. A. E. B. D. Applying Vibrational Spectroscopy to the Study of Nucleobases – Adenine as a Case-Study. New Journal of Chemistry 2013, 37(9), 2691. DOI: 10.1039/c3nj00445g.
  • Zahedi, E. A Theoretical Study of NBO, NICS, and 14N NQR Parameters of Adenine Tautomers in the Gas Phase via DFT. Journal of Heterocyclic Chemistry 2012, 49(4), 782–788. DOI: 10.1002/jhet.857.
  • Chobar, E. G.; Salimi, F.; Rajaei, G. E. Boron Nitride Nanocluster as a Carrier for Lomustine Anticancer Drug Delivery: DFT and Thermodynamics Studies. Monatshefte Für Chemie - Chemical Monthly 2020, 151(3), 309–318. DOI: 10.1007/s00706-020-02564-y.
  • Ahmed, L. O.; Omer, R. A.; Qader, I. N.; Koparir, P. Theoretical Analysis of the Reactivity of Carmustine and Lomustine Drugs. Journal of Physical Chemistry and Functional Materials 2022, 5(1), 84–96. DOI: 10.54565/jphcfum.1090661.
  • Frisch, M. J.; Trucks, G.W.; Schlegal, H.B.; Scuseria, G.E.; Robb, M.A.; Cheesman, J.R.; Zakrzewski, V.G.; MortgomergJr, J.A.; Stratmann, R.E.; Burant, J.C.; et al. Gaussian 09, Revision a 11.4; Gaussian Inc.: Wallingford, 2009.
  • Frish, A.; Nielsen, A. B.; Holder, A. J. Gauss View User Manual; Gaussian Inc.: Pittsburg, 2001.
  • Jamróz, M. H. Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations. Spectrochimica Acta A 2013, 114, 220–230. DOI: 10.1016/j.saa.2013.05.096.
  • Saikia, J.; Borah, B.; Devi, T. G. Study of Interacting Mechanism of Amino Acid and Alzheimer’s Drug using Vibrational Techniques and Computational Method. Journal of Molecular Structure 2021, 1227, 129664. DOI: 10.1016/j.molstruc.2020.129664.
  • Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C. M.; Weinhold, F. NBO 5.0, Theoretical Chemistry Institute; University of Wisconsin, Madison, 2001.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry 2012, 33(5), 580–592. DOI: 10.1002/jcc.22885.
  • Origin Pro, Version. Origin Lab Corporation, Northampton, MA, USA, 2020.
  • Boyle, N. M. O.; Tenderholt, A. L.; Langner, K. M. cclib: A Library for Package-Independent Computational Chemistry Algorithms. Journal of Computational Chemistry 2007, 29(5), 839–845. DOI: 10.1002/jcc.20823.
  • Bruni, G.; Maietta, M.; Berbenni, V.; Mustarelli, P.; Ferrara, C.; Freccero, M.; Grande, V.; Maggi, L.; Milanese, C.; Girella, A.; Marini, A. Mechanochemical Synthesis of Bumetanide − 4-Aminobenzoic Acid Molecular Cocrystals: A Facile and Green Approach to Drug Optimization. The Journal of Physical Chemistry B 2014, 118(31), 9180–9190. DOI: 10.1021/jp503256k.
  • Lee, P. C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. The Journal of Physical Chemistry 1982, 86(17), 3391–3395. DOI: 10.1021/j100214a025.
  • Ingebrigtson, D. N.; Smith, A. L. Infrared Analysis of Solids by Potassium Bromide Pellet Technique. Analytical Chemistry 1954, 26(11), 1765–1768. DOI: 10.1021/ac60095a023.
  • Prakash, O.; Singh, S. K.; Singh, B.; Singh, R. K. Investigation of Coordination Properties of Isolated Adenine to Copper Metal: A Systematic Spectroscopic and DFT Study. Spectrochimica Acta A 2013, 112, 410–416. DOI: 10.1016/j.saa.2013.04.040.
  • Kuruvilla, T. K.; Prasana, J. C.; Muthu, S.; George, J.; Mathew, S. A. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman) Study, NBO Analysis, HOMO-LUMO, First Order Hyperpolarizability and Molecular Docking Study of Methyl[(3R)-3-(2-Methylphenoxy)-3-Phenylpropyl] Amine by Density Functional Method. Spectrochimica Acta A 2017, 188, 382–393. DOI: 10.1016/j.saa.2017.07.029.
  • Borah, M. M.; Devi, T. G. Vibrational study and Natural Bond Orbital Analysis of Serotonin in Monomer and Dimer States by Density Functional Theory. Journal of Molecular Structure 2018, 1161, 464–476. DOI: 10.1016/j.molstruc.2018.02.055.
  • Saikia, J.; Devi, T. G.; Karlo, T. A Combined Spectroscopic and Quantum Chemical Approach to Study the Molecular Interaction between Anti-Inflammatory Drug Hydrocortisone and Amino Acid L-Phenylalanine. Journal of Molecular Structure 2023, 1286, 135546. DOI: 10.1016/j.molstruc.2023.135546.
  • Sarojini, K.; Krishnan, H.; Kanakam, C. C.; Muthu, S. Synthesis, Structural, Spectroscopic Studies, NBO Analysis, NLO and HOMO–LUMO of 4-Methyl-N-(3-Nitrophenyl) Benzene Sulfonamide with Experimental and Theoretical Approaches. Spectrochimica Acta A 2013, 108, 159–170. DOI: 10.1016/j.saa.2013.01.060.
  • Mariappan, G.; Sundaraganesan, N. Spectral and Structural Studies of the Anti-Cancer Drug Flutamide by Density Functional Theoretical Method. Spectrochimica Acta A 2014, 117, 604–613. DOI: 10.1016/j.saa.2013.09.043.
  • Chetry, N.; Devi, T. G. Intermolecular Interaction Study of L-Threonine in Polar Aprotic Solvent: Experimental and Theoretical Study. Journal of Molecular Liquids 2021, 338, 116689. DOI: 10.1016/j.molliq.2021.116689.
  • Margreat, S. S.; Ramalingam, S.; Sebastian, S.; Xavier, S.; Periandy, S.; Daniel, J. C.; Julie, M. M. DFT, Spectroscopic, DSC/TGA, Electronic, Biological and Molecular Docking Investigation of 2,5-Thiophenedicarboxylic Acid: A Promising Anticancer Agent. Journal of Molecular Structure 2020, 1200, 127099. DOI: 10.1016/j.molstruc.2019.127099.
  • Noureddine, O.; Issaoui, N.; Dossary, O. A. DFT and Molecular Docking Study of Chloroquine Derivatives as Antiviral to Coronavirus COVID-19. Journal of King Saud University. Science 2021, 33(1), 101248. DOI: 10.1016/j.jksus.2020.101248.
  • Abbu, V.; Nampally, V.; Baindla, N.; Tigulla, P. Stoichiometric, Thermodynamic and Computational DFT Analysis of Charge Transfer Complex of 1-Benzoylpiperazine with 2, 3-Dichloro-5, 6-Dicyano-1, 4-benzoquinone. Journal of Solution Chemistry 2019, 48(1), 61–81. DOI: 10.1007/s10953-019-00847-5.
  • Borah, B.; Devi, T. G. Vibrational Study on the Molecular Interaction of L-Proline and Para-Aminobenzoic Acid. Journal of Molecular Structure 2020, 1203, 127396. DOI: 10.1016/j.molstruc.2019.127396.
  • Parvathy, G.; Kaliammal, R.; Maheshwaran, G.; Devendran, P.; Kumar, M. K.; Sudhahar, S. Experimental and Theoretical Studies on 4-Hydroxy-3- Methoxybenzaldehyde Nicotinamide Organic Co-Crystal for Third Harmonic Nonlinear Optical Applications. Journal of Materials Science 2020, 31(21), 18937–18953. DOI: 10.1007/s10854-020-04431-2.
  • Ali, M.; Mansha, A.; Asim, S.; Zahid, M.; Usman, M.; Ali, N. DFT Study for the Spectroscopic and Structural Analysis of p-Dimethylaminoazobenzene. Journal of Spectroscopy 2018, 2018, 1–15. DOI: 10.1155/2018/9365153.
  • Sonia, C.; Devi, T. G.; Karlo, T. Quantum Chemical Analysis and Spectroscopic Characterization of Escitalopram. Materials Today: Proceedings 2023. DOI: 10.1016/j.matpr.2023.02.453.
  • Baei, M. T.; Taghartapeh, M. R.; Lemeski, E. T.; Soltani, A. A Computational Study of Adenine, Uracil, and Cytosine Adsorption Upon AlN and BN Nano-Cages. Physica B: Condensed Matter 2014, 444, 6–13. DOI: 10.1016/j.physb.2014.03.013.
  • Sonia, C.; Devi, T. G.; Karlo, T. DFT Study on the Structural and Chemical Properties of Janus Kinase Inhibitor Drug Baricitinib. Materials Today Proceedings 2022, 65, 2586–2595. DOI: 10.1016/j.matpr.2022.04.868.
  • Borah, B.; Devi, T. G. Characterization of Zn (L-Proline)2 Complex using Spectroscopic Techniques and DFT Analysis. Journal of Molecular Structure 2020, 1210, 128022. DOI: 10.1016/j.molstruc.2020.128022.
  • Borah, B.; Devi, T. G. Synthesis and Characterization of Cd (L-Proline)2 Complex Using Vibrational Spectroscopy and Quantum Chemical Calculation. Journal of Molecular Structure 2020, 1223, 128972. DOI: 10.1016/j.molstruc.2020.128972.
  • Pandey, N.; Mehata, M. S.; Pant, S.; Tewari, N. Structural, Electronic and NLO Properties of 6-Aminoquinoline: A DFT/TD-DFT Study. Journal of Fluorescence 2021, 31(6), 1719–1729. DOI: 10.1007/s10895-021-02788-z.
  • Chetry, N.; Devi, T. G.; Karlo, T. Synthesis and Characterization of Metal Complex Amino Acid using Spectroscopic Methods and Theoretical Calculation. Journal of Molecular Structure 2022, 1250, 131670. DOI: 10.1016/j.molstruc.2021.131670.
  • Tahneh, A. N.; Novir, S. B.; Balali, E. Density Functional Theory Study of Structural and Electronic Properties of Trans and Cis Structures of Thiothixene as a Nano-Drug. Journal of Molecular Modeling 2017, 23(12), 356. DOI: 10.1007/s00894-017-3522-6.
  • Khorram, R.; Raissi, H.; Shahabi, M. Analysis of the Structures, Energetics, and Vibrational Frequencies for the Hydrogen-Bonded Interaction of Nucleic Acid Bases with Carmustine Pharmaceutical Agent: A Detailed Computational Approach. Structural Chemistry 2018, 29(4), 1165–1174. DOI: 10.1007/s11224-018-1102-8.
  • Sekar, N.; Katariya, S.; Rhyman, L.; Alswaidan, I. A.; Ramasami, P. Molecular and NLO Properties of Red Fluorescent Coumarins – DFT Computations Using Long-Range Separated and Conventional Functionals. Journal of Fluorescence 2019, 29(1), 241–253. DOI: 10.1007/s10895-018-2333-1.
  • Medetalibeyoglu, H. Synthesis, Antioxidant Activity, Spectroscopic, Electronic, Nonlinear Optical (NLO) and Thermodynamic Properties of 2-Ethoxy-4- [(5-oxo-3-phenyl-1,5-dihydro-1,2,4-triazol-4-ylimino) -methyl] -phenyl -4-methoxybenzoate: A Theoretical and Experimental Study. Journal of the Iranian Chemical Society 2022, 19(3), 1015–1038. DOI: 10.1007/s13738-021-02401-x.
  • Kumar, V. K.; Sangeetha, R.; Barathi, D.; Mathammal, R.; Jayamani, N. Vibrational assignment of the spectral data, molecular dipole moment, polarizability, first hyperpolarizability, HOMO–LUMO and thermodynamic properties of 5-nitoindan using DFT quantum chemical calculations. Spectrochimica Acta A 2014, 118, 663–671. DOI: 10.1016/j.saa.2013.08.089.
  • Borah, B.; Devi, T. G. Molecular Property Analysis of the Interacting State of L-Threonine and Metformin: An Experimental and Computational Approach. Journal of Molecular Structure 2020, 1221, 128819. DOI: 10.1016/j.molstruc.2020.128819.
  • Subhapriya, P.; Sadasivam, K.; Pachamuthu, P.; Dhanapal, V.; Vijayanand, P. S. TD-DFT, NBO Analyses, Electronic and NLO Properties of Hydrogen-Bonded Undecyloxy Benzoic Acid with Suberic Acid Mesogen. Molecular Crystals and Liquid Crystals 2017, 650(1), 65–79. DOI: 10.1080/15421406.2017.1335158.
  • Sameti, M. R.; Zarei, P. NBO, AIM, HOMO–LUMO and Thermodynamic Investigation of the Nitrate Ion Adsorption on the Surface of Pristine, Al and Ga Doped BNNTs: A DFT Study. Adsorption 2018, 24(8), 757–767. DOI: 10.1007/s10450-018-9977-7.
  • Alver, O.; Parlak, C.; Umar, Y.; Ramasami, P. DFT/QTAIM Analysis of Favipiravir Adsorption on Pristine and Silicon Doped C20 Fullerenes. Main Group Metal Chemistry 2019, 42(1), 143–149. DOI: 10.1515/mgmc-2019-0016.
  • Singh, R.N.; Kumar, A.; Tiwari, R.K.; Rawat, P. A Combined Experimental and Theoretical (DFT and AIM) Studies on Synthesis, Molecular Structure, Spectroscopic Properties and Multiple Interactions Analysis in a Novel Ethyl-4-[2-(Thiocarbamoyl) Hydrazinylidene]-3,5-Dimethyl1H-Pyrrole-2-Carboxylate and Its Dimer. Spectrochimica Acta A 2013, 112, 182–190. DOI: 10.1016/j.saa.2013.04.002.
  • Chetry, N.; Karlo, T.; Devi, T. G. Intermolecular Interaction Study of Ag-Amino Acid Biomolecular Complex using Vibrational Spectroscopic Techniques and Density Functional Theory Method. Journal of Molecular Structure 2022, 1266, 133410. DOI: 10.1016/j.molstruc.2022.133410.
  • Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. Physical Review Letters 1984, 52(12), 997–1000. DOI: 10.1103/PhysRevLett.52.997.
  • Dreuw, A.; Gordon, M. H. Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules. Chemical Reviews 2005, 105(11), 4009–4037. DOI: 10.1021/cr0505627.
  • Raja, M.; Muhamed, R. R.; Muthu, S.; Suresh, M. Synthesis, Spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui Function and Molecular Docking Study of (E)-1-(5-Bromo-2- Hydroxybenzylidene) Semicarbazide. Journal of Molecular Structure 2017, 1141, 284–298. DOI: 10.1016/j.molstruc.2017.03.117.
  • Cancès, E.; Mennucci, B.; Tomasi, J. A new Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. The Journal of Chemical Physics 1997, 107(8), 3032–3041. DOI: 10.1063/1.474659.
  • Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution. The Journal of Chemical Physics 2002, 117(1), 43–54. DOI: 10.1063/1.1480445.
  • Trivedi, M. K.; Sethi, K. K.; Panda, P.; Jana, S. Physicochemical, Thermal and Spectroscopic Characterization of Sodium Selenate Using XRD, PSD, DSC, TGA/DTG, UV-vis, and FT-IR. Marmara Pharmaceutical Journal 2017, 21(2), 311–311. DOI: 10.12991/marupj.300796.
  • Magesh, M.; Vijayakumar, P.; Arunkumar, A.; Babu, G. A.; Ramasamy, P. Investigation of Structural and Optical Properties in LiInS2 Single Crystal Grown by Bridgman-Stockbarger Method for Mid IR Laser Application. Materials Chemistry and Physics 2015, 149-150, 224–229. DOI: 10.1016/j.matchemphys.2014.10.010.
  • Vasanthakumari, R.; Nirmala, W.; Sagadevan, S.; Mugeshini, S.; Rajeswari, N.; Balu, R.; Santhakumari, R. Synthesis, Growth, Crystal Structure, Vibrational, DFT and HOMO, LUMO Analysis on Protonated Molecule-4-Aminopyridinium Nicotinate. Journal of Molecular Structure 2021, 1239, 130449. DOI: 10.1016/j.molstruc.2021.130449.
  • Abdelrazek, E. M.; Abdelghany, A. M.; Badr, S. I.; Morsi, M. A. Structural, Optical, Morphological and Thermal Properties of PEO/PVP Blend Containing Different Concentrations of Biosynthesized Au Nanoparticles. Journal of Materials Research and Technology 2018, 7(4), 419–431. DOI: 10.1016/j.jmrt.2017.06.009.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews 1997, 23(1-3), 3–25. DOI: 10.1016/S0169-409X(96)00423-1.
  • Mary, S. J. J.; Pradhan, S.; James, C. Molecular Structure, NBO Analysis of the Hydrogen-Bonded Interactions, Spectroscopic (FT–IR, FT–Raman), Drug Likeness and Molecular Docking of the Novel Anti COVID-2 Molecule (2E)-N-Methyl-2-[(4-Oxo-4Hchromen-3-yl) Methylidene]-Hydrazinecarbothioamide (Dimer)-Quantum Chemical Approach. Spectrochimica Acta A 2021, 251, 119388. DOI: 10.1016/j.saa.2020.119388.
  • Nath, A.; Kumer, A.; Zaben, F.; Khan, M. W. Investigating the Binding Affinity, Molecular Dynamics, and ADMET Properties of 2,3-Dihydrobenzofuran Derivatives as an Inhibitor of Fungi, Bacteria, and Virus Protein. Beni-Suef University Journal of Basic and Applied Sciences 2021, 10(1), 36. DOI: 10.1186/s43088-021-00117-8.
  • Ranjith, D.; Ravikumar, C. SwissADME Predictions of Pharmacokinetics and Drug-Likeness Properties of Small Molecules Present in Ipomoea mauritiana Jacq. Journal of Pharmacognosy Phytochemistry 2019, 8, 2063–2073.
  • Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. Neurorx 2005, 2(4), 541–553. DOI: 10.1602/neurorx.2.4.541.
  • Yalcin, S. Molecular Docking, Drug Likeness, and ADMET Analyses of Passiflora Compounds as P-Glycoprotein (P-gp) Inhibitor for the Treatment of Cancer. Current Pharmacology Reports 2020, 6(6), 429–440. DOI: 10.1007/s40495-020-00241-6.
  • Hassan, A. U.; Sumrra, S. H.; Zafar, M. N.; Nazar, M. F.; Mughal, E. U.; Zafar, M. N.; Iqbal, M. New Organosulfur Metallic Compounds as Potent Drugs: Synthesis, Molecular Modeling, Spectral, Antimicrobial, Drug likeness and DFT Analysis. Molecular Diversity 2022, 26(1), 51–72. DOI: 10.1007/s11030-020-10157-4.
  • Mishra, S. S.; Sharma, C. S.; Singh, H. P.; Pandiya, H.; Kumar, N. In silico ADME, Bioactivity and Toxicity Parameters Calculation of Some Selected Anti-Tubercular Drugs. International Journal of Pharmaceutical and Phytopharmacological Research 2016, 6(6), 77–79. DOI: 10.24896/eijppr.2016661.
  • Jeelani, A.; Muthu, S.; Narayana, B. Molecular Structure Determination, Bioactivity Score, Spectroscopic and Quantum Computational Studies on (E)-N’-(4-Chlorobenzylidene)-2-(Napthalen-2-Yloxy) Acetohydrazide. Journal of Molecular Structure 2021, 1241, 130558. DOI: 10.1016/j.molstruc.2021.130558.
  • Azad, I.; Jafri, A.; Khan, T.; Akhter, Y.; Arshad, M.; Hassan, F.; Ahmad, N.; Khan, A. R.; Nasibullah, M. Evaluation of Pyrrole-2,3-Dicarboxylate Derivatives: Synthesis, DFT Analysis, Molecular Docking, Virtual Screening and In Vitro Anti-Hepatic Cancer Study. Journal of Molecular Structure 2019, 1176, 314–334. DOI: 10.1016/j.molstruc.2018.08.049.
  • Molinspiration Cheminformatics free Web Services., Slovensky Grob, Slovakia. https://www.molinspiration. com.
  • Sheela, N.R.; Muthu, S.; Sampathkrishnan, S. Molecular Orbital Studies (Hardness, Chemical Potential and Electrophilicity), Vibrational Investigation and Theoretical NBO Analysis of 4-40 -(1H-1,2,4-Triazol-1-Yl Methylene) Dibenzonitrile based on Abinitio and DFT Methods. Spectrochimica Acta A 2014, 120, 237–251. DOI: 10.1016/j.saa.2013.10.007.
  • Upadhyay, G.; Upadhyaya, P.; Devi, T. G. Vibrational Studies of Polar Aprotic Molecule in Aromatic Chemical and Isotropic Solvents: Experimental and Quantum Chemical Investigations. Journal of Raman Spectroscopy 2015, 46(12), 1291–1302. DOI: 10.1002/jrs.4759.
  • Saikia, J.; Devi, T. G.; Karlo, T. Study of the Molecular Interaction between Hormone and Anti-Cancer Drug using DFT and Vibrational Spectroscopic Methods. Journal of Molecular Structure 2022, 1250, 131889. DOI: 10.1016/j.molstruc.2021.131889.
  • Rachedi, K. O.; Bahadi, R.; Aissaoui, M.; Hadda, T. B.; Belhani, B.; Bouzina, A.; Berredjem, M. DFT Study, POM Analyses and Molecular Docking of Novel Oxazaphosphinanes: Identification of Antifungal Pharmacophore Site. Indonesian Journal of Chemistry 2020, 20(2), 440–450. DOI: 10.22146/ijc.46375.
  • Dlala, N. A.; Bouazizi, Y.; Ghalla, H.; Hamdi, N. DFT Calculations and Molecular Docking Studies on a Chromene Derivative. Journal of Chemistry 2021, 2021, 1–17. DOI: 10.1155/2021/6674261.
  • Rahman, J.; Tareq, A. M.; Hossain, M. M.; Sakib, S. A.; Islam, M. N.; Ali, M. H.; Uddin, A. B. M. N.; Hoque, M.; Nasrin, M. S.; Emran, T. B.; et al. Biological evaluation, DFT Calculations and Molecular Docking Studies on the Antidepressant and Cytotoxicity Activities of Cycas pectinata Buch-Ham. Compounds. Pharmaceuticals 2020, 13(9), 232. DOI: 10.3390/ph13090232.
  • Zhang, S.; Xie, C. The role of OXCT1 in the Pathogenesis of Cancer as a Rate-Limiting Enzyme of Ketone Body Metabolism. Life Sciences 2017, 183, 110–115. DOI: 10.1016/j.lfs.2017.07.003.
  • Gnanasambandan, K.; Sayeski, P. P. A Structure-Function Perspective of Jak2 Mutations and Implications for Alternate Drug Design Strategies: The Road not Taken. Current Medicinal Chemistry 2011, 18(30), 4659–4673. DOI: 10.2174/092986711797379267.
  • Liosi, M. E.; Krimmer, S. G.; Newton, A. S.; Dawson, T. K.; Puleo, D. E.; Cutrona, K. J.; Suzuki, Y.; Schlessinger, J.; Jorgensen, W. L. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. Journal of Medicinal Chemistry 2020, 63(10), 5324–5340. DOI: 10.1021/acs.jmedchem.0c00192.
  • Verma, A.; Kambhampati, S.; Parmar, S.; Platanias, L. C. Jak Family of Kinases in Cancer. Cancer Metastasis Reviews 2003, 22(4), 423–434. DOI: 10.1023/a:1023805715476.
  • Yao, T. T.; Xie, J. F.; Liu, X. G.; Cheng, J. L.; Zhu, C. Y.; Zhao, J. H.; Dong, X. W. Integration of Pharmacophore Mapping and Molecular Docking in Sequential Virtual Screening: Towards the Discovery of Novel JAK2 Inhibitors. RSC Advances 2017, 7(17), 10353–10360. DOI: 10.1039/C6RA24959K.
  • Achutha, A.S.; Pushpa, V. L.; Manoj, K.B. Comparative Molecular Docking Studies of Phytochemicals as Jak2 Inhibitors using Autodock and ArgusLab. Materials Today Proceedings 2021, 41, 711–716. DOI: 10.1016/j.matpr.2020.05.661.
  • Israel, M.; Schwartz, L. Tumor Cells are Vitally Dependent upon Ketolysis, Inhibition of Succinyl CoA: 3-Oxoacid-CoA Transferase Should Block Them. Open Access Journal of Biomedical Science 2020, 1(5), 220–226. DOI: 10.38125/OAJBS.000150.
  • BIOVIA, Dassault Systemes. BIOVIA Discovery. Studio Academic Research Suite; Dassault Systemes: San Diego, 2021.
  • Mishra, D.; Maurya, R. R.; Kumar, K.; Munjal, N. S.; Bahadur, V.; Sharma, S.; Singh, P.; Bahadur, I. Structurally Modified Compounds of Hydroxychloroquine, Remdesivir and Tetrahydrocannabinol against Main Protease of SARS-CoV-2, A Possible Hope for COVID-19: Docking and Molecular Dynamics Simulation Studies. Journal of Molecular Liquids 2021, 335, 116185. DOI: 10.1016/j.molliq.2021.116185.
  • Rolta, R.; Yadav, R.; Salaria, D.; Trivedi, S.; Imran, M.; Sourirajan, A.; Baumler, D.J.; Dev, K. In Silico Screening of Hundred Phytocompounds of Ten Medicinal Plants as Potential Inhibitors of Nucleocapsid Phosphoprotein of COVID-19: An Approach to Prevent Virus Assembly. Journal of Biomolecular Structure & Dynamics 2020, 39(18), 7017–7034. DOI: 10.1080/07391102.2020.1804457.
  • Singh, P. S.; Devi, T. G. Intermolecular Interaction Study of Favipiravir -Uracil Biomolecular Complex using Vibrational Spectroscopic Techniques and Computational Methods. Journal of Molecular Structure 2024, 1305, 137709. DOI: 10.1016/j.molstruc.2024.137709.
  • Yadav, R.; Hasan, S.; Mahato, S.; Celik, I.; Mary, Y. S.; Kumar, A.; Dhamija, P.; Sharma, A.; Choudhary, N.; Chaudhary, P. K.; et al. Molecular Docking, DFT Analysis, and Dynamics Simulation of Natural Bioactive Compounds Targeting ACE2 and TMPRSS2 Dual Binding Sites of Spike Protein of SARS CoV-2. Journal of Molecular Liquids 2021, 342, 116942. DOI: 10.1016/j.molliq.2021.116942.
  • Davis, C. K.; Nasla, K.; Anjana, A. K.; Rajanikant, G. K. Taxifolin as Dual Inhibitor of Mtb DNA Gyrase and Isoleucyl-tRNA Synthetase: In Silico Molecular Docking, Dynamics Simulation and In Vitro Assays. In Silico Pharmacology 2018, 6(1), 8. DOI: 10.1007/s40203-018-0045-5.
  • Yadav, P.; Rana, M.; Chowdhury, P. DFT and MD Simulation Investigation of Favipiravir as an Emerging Antiviral Option Against Viral Protease (3CLpro) of SARS-CoV-2. Journal of Molecular Structure 2021, 1246, 131253. DOI: 10.1016/j.molstruc.2021.131253.
  • Karmalawy, A. A.; Dahab, M. A.; Metwaly, A. M.; Elhady, S. S.; Elkaeed, E. B.; Eissa, I. H.; Darwish, K. M. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Frontiers in Chemistry 2021, 9, 661230. DOI: 10.3389/fchem.2021.661230.
  • He, F.; Wang, X.; Wu, Q.; Liu, S.; Cao, Y.; Guo, X.; Yin, S.; Yin, N.; Li, B.; Fang, M. Identification of Potential ATP-Competitive Cyclin-Dependent Kinase 1 Inhibitors: De Novo Drug Generation, Molecular Docking, and Molecular Dynamics Simulation. Computers in Biology and Medicine 2023, 155, 106645. DOI: 10.1016/j.compbiomed.2023.106645.
  • Najmi, A.; Alam, M. S.; Thangavel, N.; Taha, M. M. E.; Meraya, A. M.; Albratty, M.; Alhazmi, H. A.; Ahsan, W.; Haque, A.; Azam, F. Synthesis, Molecular Docking, and In Vivo Antidiabetic Evaluation of New Benzylidene-2,4-Thiazolidinediones as Partial PPAR-γ Agonists. Scientific Reports 2023, 13(1), 19869. DOI: 10.1038/s41598-023-47157-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.