Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The random dynamic performances of EMUs with polygonal damages

&
Pages 1329-1354 | Received 26 Dec 2022, Accepted 18 Jun 2023, Published online: 28 Jun 2023

References

  • Bevan A, Klecha S. Use of magnetic flux techniques to detect wheel tread damage. Proc Inst Civ Eng Trans. 2016;169(5):330–338.
  • Ye Y, Shi D, Krause P, et al. Wheel flat can cause or exacerbate wheel polygonization. Veh Syst Dyn. 2020;58(10):1575–1604. doi:10.1080/00423114.2019.1636098
  • Tao G, Wen Z, Jin X, et al. Polygonisation of railway wheels: a critical review. Railw Eng Sci. 2020;28(4):317–345. doi:10.1007/s40534-020-00222-x
  • Jing L, Wang K, Zhai W. Impact vibration behavior of railway vehicles: a state-of-the-art overview. Acta Mech Sin. 2021;37(8):1193–1221. doi:10.1007/s10409-021-01140-9
  • Rode W, Müller D, Villman J. Results of DB AG investigations’ out-of-round wheels’. Proceedings corrugation symposium—extended abstracts, IFV Bahntechink, Technische Universität Berlin, Berlin, Germany, 1997.
  • Müller R, Diener M. Verschleisserscheinungen an radlaufflägen von eisenbahnfahrzeugen. ZEV, DET, Glasers Annalen. Die Eisenbahntechnik. 1995;119(6):177–192.
  • Nielsen JC, Johansson A. Out-of-round railway wheels-a literature survey. Proc Inst Mech Eng F J Rail Rapid Transit. 2000;214(2):79–91. doi:10.1243/0954409001531351
  • Nielsen JC, Lundén R, Johansson A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces. Veh Syst Dyn. 2003;40(1-3):3–54. doi:10.1076/vesd.40.1.3.15874
  • Jin X, Wu L, Fang J, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system. Veh Syst Dyn. 2012;50(12):1817–1834. doi:10.1080/00423114.2012.695022
  • Brommundt E. A simple mechanism for the polygonalization of railway wheels by wear. Mech Res Commun. 1997;24(4):435–442. doi:10.1016/S0093-6413(97)00047-5
  • Morys B. Enlargement of out-of-round wheel profiles on high speed trains. J Sound Vib. 1999;227(5):965–978. doi:10.1006/jsvi.1999.2055
  • Barke DW, Chiu WK. A review of the effects of out-of-round wheels on track and vehicle components. Proc Inst Mech Eng F J Rail Rapid Transit. 2005;219(3):151–175. doi:10.1243/095440905X8853
  • Meywerk M. Polygonalization of railway wheels. Arch Appl Mech. 1999;69(2):105–120. doi:10.1007/s004190050208
  • Meinke P, Meinke S. Polygonalization of wheel treads caused by static and dynamic imbalances. J Sound Vib. 1999;227(5):979–986. doi:10.1006/jsvi.1999.2590
  • Morys B, Kuntze H-B. Simulation analysis and active compensation of the out-of-round phenomena at wheels of high speed trains. Proc World Cong Railw Res. 1997;500:95–106.
  • Fu B, Bruni S, Luo S. Numerical simulation for polygonal wear of railway wheels. 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM 2018, 2018, 271–280.
  • Peng B, Iwnicki S, Shackleton P, et al. A practical method for simulating the evolution of railway wheel polygonalization. Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017). 2017, 14–18.
  • Peng B, Iwnicki S, Shackleton P, et al. General conditions for railway wheel polygonal wear to evolve. Veh Syst Dyn. 2021;59(4):568–587. doi:10.1080/00423114.2019.1697458
  • Johansson A, Andersson C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel–rail interaction and wear. Veh Syst Dyn. 2005;43(8):539–559. doi:10.1080/00423110500184649
  • Tao G, Wang L, Wen Z, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels. Veh Syst Dyn. 2018;56(6):883–899. doi:10.1080/00423114.2017.1399210
  • Wu X, Rakheja S, Cai W, et al. A study of formation of high order wheel polygonalization. Wear. 2019;424-425:1–14. doi:10.1016/j.wear.2019.01.099
  • Shen W, Song C, Li G, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions. Railway Locomotive Car. 2018;38(4):18–23.
  • Gerlici J, Lack T. Contact geometry influence on the rail/wheel surface stress distribution. Procedia Eng. 2010;2(1):2249–2257. doi:10.1016/j.proeng.2010.03.241
  • Zeng Y, Song D, Zhang W, et al. Risk assessment of wheel polygonization on high-speed trains based on Bayesian networks. Proc Inst Mech Eng O J Risk Reliab. 2021;235(2):182–192. doi:10.1177/1748006X20972574
  • Graham C, Talay D. Stochastic simulation and Monte Carlo methods: mathematical foundations of stochastic simulation. Springer Science & Business Media; 2013.
  • Herrador MÁ, Asuero AG, González AG. Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method: an overview. Chemom Intell Lab Syst. 2005;79(1-2):115–122. doi:10.1016/j.chemolab.2005.04.010
  • Bigoni D, Engsig-Karup A, True H. Modern uncertainty quantification methods in railroad vehicle dynamics). ASME 2013 rail transportation division fall technical conference, 2014. American Society of Mechanical Engineers Digital Collection.
  • Mazzola L, Bruni S. Effect of suspension parameter uncertainty on the dynamic behaviour of railway vehicles. Appl Mech Mater. 2011;104:177–185. doi:10.4028/www.scientific.net/AMM.104.177
  • Xin L, Li X, Zhu Y, et al. Uncertainty and sensitivity analysis for train-ballasted track–bridge system. Veh Syst Dyn. 2019: 1–19.
  • Xu B, Zhang J, Guan X. Estimation of the parameters of a railway vehicle suspension using model-based filters with uncertainties. Proc Inst Mech Eng F J Rail Rapid Transit. 2015;229(7):785–797. doi:10.1177/0954409714521605
  • Zhao Y-X, Gao Q, Wang J-N. An approach for determining an appropriate assumed distribution of fatigue life under limited data. Reliab Eng Syst Saf. 2000;67(1):1–7. doi:10.1016/S0951-8320(99)00036-8
  • Xiao X, Jin X, Deng Y, et al. Effect of curved track support failure on vehicle derailment. Veh Syst Dyn. 2008;46(11):1029–1059. doi:10.1080/00423110701689602
  • Zhai W, Wang K, Cai C. Fundamentals of vehicle–track coupled dynamics. Veh Syst Dyn. 2009;47(11):1349–1376. doi:10.1080/00423110802621561
  • Momhur A, Zhao Y, Quan L, et al. Flexible-Rigid wheelset introduced dynamic effects due to wheel tread flat. Shock Vib. 2021;2021; doi:10.1155/2021/5537286
  • Shabana A. Dynamics of multi-body systems. Cambridge university press; 2020.
  • Shabana A, Chamorro R, Rathod C. A multi-body system approach for finite-element modelling of rail flexibility in railroad vehicle applications. Proc Inst Mech Eng K: J Multi-body Dyn. 2008;222(1):1–15. doi:10.1243/14644193JMBD117
  • Chamorro R, Escalona JL, González M. An approach for modeling long flexible bodies with application to railroad dynamics. Multibody Syst Dyn. 2011;26(2):135–152. doi:10.1007/s11044-011-9255-x
  • Xiao, X, Jin, X, and Wen, Z. Effect of disabled fastening systems and ballast on vehicle derailment. 2007.
  • Zhai W, Cai C, Guo S. Coupling model of vertical and lateral vehicle/track interactions. Veh Syst Dyn. 1996;26(1):61–79. doi:10.1080/00423119608969302
  • Wanming Z. Vehicle-track coupling dynamics. People’s Republic of China: China Science Publishing & Media Ltd; 2007.
  • Shen Z, Hedrick J, Elkins J. A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh Syst Dyn. 1983;12(1-3):79–83. doi:10.1080/00423118308968725
  • Kalker JJ. Three-dimensional elastic bodies in rolling contact. Springer Science & Business Media; 2013.
  • Jonson K, Vermeulen P. Contact of non-spherical bodies transmitting tangential forces. J Appl Mech. 1964;31(2):339–340.
  • Johansson A. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic. J Sound Vib. 2006;293(3-5):795–806. doi:10.1016/j.jsv.2005.08.048
  • Luo J, Zhu S, Zhai W. An advanced train-slab track spatially coupled dynamics model: Theoretical methodologies and numerical applications. J Sound Vib. 2021;501:116059. doi:10.1016/j.jsv.2021.116059
  • Wu X, Rakheja S, Ahmed A, et al. Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat. Proc Inst Mech Eng F J Rail Rapid Transit. 2018;232(4):1033–1048. doi:10.1177/0954409717708895
  • Dong R. Vertical dynamics of railway vehicle-track system. Concordia University; 1994.
  • Wu X, Cai W, Chi M, et al. Investigation of the effects of sleeper-passing impacts on the high-speed train. Veh Syst Dyn. 2015;53(12):1902–1917. doi:10.1080/00423114.2015.1091085
  • Nielsen JC. High-frequency vertical wheel–rail contact forces—Validation of a prediction model by field testing. Wear. 2008;265(9-10):1465–1471. doi:10.1016/j.wear.2008.02.038
  • Wu T, Thompson D. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions. Wear. 2005;258(7-8):1115–1125. doi:10.1016/j.wear.2004.03.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.