Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
314
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A modelling methodology of the axle box bearing-vehicle coupled system dynamics

ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Pages 1401-1423 | Received 12 Dec 2022, Accepted 02 Jul 2023, Published online: 17 Jul 2023

References

  • Li T, Sun W, Meng ZC, et al. Dynamic investigation on railway vehicle considering the dynamic effect from the axle box bearings. Adv Mech Eng. 2019;11(4):1–13.
  • Nagatomo T, Takahashi K, Okamura Y, et al. Effects of load distribution on life of radial roller bearings. J Tribol. 2012;134(2):021101. doi:10.1115/1.4006175
  • Marconnet P, Pottier B, Rasolofondraibe L, et al. Measuring load distribution on the outer raceways of rotating machines. Mech Syst Signal Process. 2016: 66–67: 582-021596.
  • Kwapisz D, Stephant J, Meizel D. Instrumented bearing for force and moment measurements. Sensors. 2008: 1480–1483.
  • Liu DK. Research on fatigue life and reliability of high-speed train axle box bearing. [PhD thesis]. Beijing: Beijing Jiaotong University, 2017.
  • Cousseau T, Graca B, Campos A, et al. Experimental measuring procedure for the friction torque in rolling bearings. Lubricat Sci. 2010;22(4):133–147. doi:10.1002/ls.115
  • Hammami M, Martins R, Fernandes C, et al. Friction torque in rolling bearings lubricated with axle gear oils. Tribol Int. 2018;119:419–435. doi:10.1016/j.triboint.2017.11.018
  • Mihaela BL, Luc H, Ana T, et al. Rolling friction torque in ball-race contacts operating in mixed lubrication conditions. Lubricants. 2015;3(2):222–243. doi:10.3390/lubricants3020222
  • Jones AB. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. J Basic Eng. 1960;82(2):309–320. doi:10.1115/1.3662587
  • Jones AB. Ball motion and sliding friction in ball bearings. J Basic Eng. 1959;81:1–12. doi:10.1115/1.4008346
  • Houpert L. An enhanced study of the load-displacement relationships for rolling element bearings. J Tribol. 2014;136(1):011105–011116. doi:10.1115/1.4025602
  • Kabus S, Hansen MR, Mouritsen OØ. A new quasi-static cylindrical roller bearing model to accurately consider non-Hertzian contact pressure in time domain simulations. J Tribol. 2012;134(4):041401), doi:10.1115/1.4007219
  • Bercea I, Cretu S, Nélias D. Analysis of double-Row tapered roller bearings, part I - model. Tribol Transactions. 2003;46(2):228–239. doi:10.1080/10402000308982622
  • Nélias D, Bercea I, Mitu N. Analysis of double-Row tapered roller bearings, part II – results: prediction of fatigue life and heat dissipation. Tribol Transactions. 2003;46(2):240–247. doi:10.1080/10402000308982623
  • Walters CT. The dynamics of ball bearings. J Lubrication. 1971;93(1):1–10. doi:10.1115/1.3451516
  • Gupta PK. Dynamics of rolling-element bearings—part I: cylindrical roller bearing analysis. J Lubrication Technol. 1979;101(3):293–302. doi:10.1115/1.3453357
  • Cretu S, Bercea I, Mitu N. A dynamics analysis of tapered roller bearing under fully flooded conditions part 1: theoretical formulation. Wear. 1995;188(1/2):1–10.
  • Sakaguchi T, Harada K. Dynamic analysis of cage behavior in a tapered roller bearing. J Tribol. 2006;128(3):604–611. doi:10.1115/1.2197527
  • Wang ZW, Allen P, Mei GM, et al. Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train. Vehicle System Dynam. 2020;58(9):1385–1406. doi:10.1080/00423114.2019.1626013
  • Wang ZW, Zhang WH, Yin ZH, et al. Effect of vehicle vibration environment of high-speed train on dynamic performance of axle box bearing. Vehicle System Dynam. 2019;57(4):543–563. doi:10.1080/00423114.2018.1473615
  • Lu ZG, Wang XC, Yue KY, et al. Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects. Mech Mach Theory. 2021;157(2):104215.
  • Ma XN, Liu JW, Shi WR. Dynamic characteristics of high-speed railway vehicle with axle box bearing faults. IOP Conf Ser Mater Sci Eng. 2019;563:0032023. doi:10.1088/1757-899X/563/3/032023
  • Huo JZ, Wu HY, Zhu D, et al. The rigid-flexible coupling dynamic model and response analysis of bearing-wheel-rail system under track irregularity. Proc Instit Mech Eng Part C: J Mech Eng Sci. 2017;0(0):1–12.
  • Kalker JJ. Wheel-rail rolling contact theory. Wear. 1991;144(1-2):243–261. doi:10.1016/0043-1648(91)90018-P
  • Zhang XN, Han QK, Peng ZK, et al. A comprehensive dynamic model to investigate the stability problems of the rotor-bearing system due to multiple excitations. Mech Syst Signal Process. 2016: 70–71:1171-1192.
  • Thomson WT. Theory of vibration with applications. Beijing: Tsinghua University Press; 2005.
  • Li Z, Zheng LZ, Zhang X, et al. Quasi statical analysis on double-row tapered roller bearings. J Harbin Eng Univ. 2017;38(02):276–281.
  • Luo JW, Luo TY. Analysis, calculation and application of rolling bearing. Beijing: China Machine Press; 2009.
  • Dai LC, Chi MR, Xu CB, et al. A hybrid neural network model based modelling methodology for the rubber bushing. Vehicle System Dynam. 2021;60(9):2941–2962.
  • Zheng DX, Chen WF, Li MM. An optimized thermal network model to estimate thermal performances on a pair of angular contact ball bearings under oil-air lubrication. Appl Therm Eng. 2018;131:328–339. doi:10.1016/j.applthermaleng.2017.12.019
  • Wu XW, Chi MR, Gao H. Damage tolerances of a railway axle in the presence of wheel polygonalizations. Eng Fail Anal. 2016;66:44–59. doi:10.1016/j.engfailanal.2016.04.009
  • Xiao XB, Ling L, Jin XS. A study of the derailment mechanism of a high speed train due to an earthquake. Vehicle System Dynam. 2012;50(3):449–470. doi:10.1080/00423114.2011.597508
  • Liao XK, Yi C, Qu FY, et al. Research on load characteristics of axle-box bearing raceway under wheel-rail excitation. Shock Vibration. 2021. doi:10.1155/2021/5871667
  • Luo J, Zhu SY, Zhai WM. An efficient model for vehicle-slab track coupled dynamic analysis considering multiple slab cracks. Construct Building Mater. 2019;215:557–568. doi:10.1016/j.conbuildmat.2019.04.219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.