Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
315
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

High-speed railway wheel polygon detection framework using improved frequency domain integration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1424-1445 | Received 09 Feb 2023, Accepted 02 Jul 2023, Published online: 19 Jul 2023

References

  • Nielsen JCO, Johansson A. Out-of-round railway wheels-a literature survey. Proc IMechE Part F J Rail Rapid Transit. 2000;214(2):79–91. DOI:10.1243/0954409001531351
  • Nielsen JCO, Lundén R, Johansson A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces. Veh Syst Dyn. 2010;40(1–3):3–54. DOI:10.1076/vesd.40.1.3.15874
  • Barke D, Chiu W. A review of the effects of out-of-round wheels on track and vehicle components. Proc IMechE Part F J Rail Rapid Transit. 2005;219(3):151–175. DOI:10.1243/095440905X8853
  • Wang P, Tao G, Yang X, et al. Analysis of polygonal wear characteristics of Chinese high-speed train wheels. J Southwest Jiaotong Univ. 2021 (in Chinese). DOI:10.3969/j.issn.0258-2724.20210777
  • Tao G, Wen Z, Jin X, et al. Polygonisation of railway wheels: a critical review. Rail Eng Sci. 2020;28(4):317–345. DOI:10.1007/s40534-020-00222-x
  • Nielsen JCO, Mirza A, Cervello S, et al. Reducing train-induced ground-borne vibration by vehicle design and maintenance. Int J Rail Transp. 2015;3(1):17–39. DOI:10.1080/23248378.2014.994260
  • Ouakka S, Verlinden O, Kouroussis G. Railway ground vibration and mitigation measures: benchmarking of best practices. Rail Eng Sci. 2022;30:1–22. DOI:10.1007/s40534-021-00264-9
  • Rode W, Müller D, Villman J. Results of DB AG investigations—out-of-round wheels. In: Proceedings corrugation symposium—extended abstracts, IFV Bahntechink; Berlin: Technische Universität Berlin; 1997.
  • Tao G, Xie C, Wang H, et al. An investigation into the mechanism of high-order polygonal wear of metro train wheels and its mitigation measures. Veh Syst Dyn. 2021;59(10):1557–1572. DOI:10.1080/00423114.2020.1770810
  • Jiang Y, Wu P, Zeng J, et al. Detection and alleviation of the abnormal vibration of the monorail based on experiment and simulation. J Low Freq Noise Vib Active Control. 2019;38(2):282–295. DOI:10.1177/1461348419825605
  • Lv K, Wang K, Chen Z, et al. Influence of wheel eccentricity on vertical vibration of suspended monorail vehicle: experiment and simulation. Shock Vib. 2017;1367683:1–10. DOI:10.1155/2017/1367683
  • Wu P, Li G, Wu X, et al. Wheel polygonalization induced axle box vibrations and bolt self-loosening for high speed train. In: Proceedings of the 25th international symposium dynamics of vehicles on roads tracks (IAVSD 2017), Vol. 2; Queensland: Rockhampton; 14–18 August 2017. p. 1191–1196.
  • Wang Z, Mei G, Zhang W, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high speed train. Proc IMechE Part F J Rail Rapid Transit. 2018;232(6):1852–1863. DOI:10.1177/0954409717752998
  • Wang Z, Cheng Y, Mei G, et al. Torsional vibration analysis of the gear transmission system of high speed trains with wheel defects. Proc IMechE Part F J Rail Rapid Transit. 2020;234(2):123–133. DOI:10.1177/0954409719833791
  • Han Z, Chen Z, Zhai W. Effect of wheel polygonal wear on dynamic responses of high speed train-track-bridge system. In: Proceedings of the 25th international symposium dynamics of vehicles on roads tracks (IAVSD 2017), Vol. 2; Queensland: Rockhampton; 14–18 August 2017. p. 823–828.
  • Chen M, Sun Y, Guo Y, et al. Study on effect of wheel polygonal wear on high speed vehicle-track subgrade vertical interactions. Wear. 2019;432–433(102914):1–9. DOI:10.1016/j.wear.2019.05.029
  • Knothe K, Grassie SL. Workshop on rail corrugations and out-of-round wheels. J Sound Vib. 1999;227(5):895–897. DOI:10.1006/jsvi.1999.2053
  • Xie Q, Tao G, He B, et al. Rail corrugation detection using one-dimensional convolution neural network and data-driven method. Measurement (Mahwah NJ). 2022;200:111624. DOI:10.1016/j.measurement.2022.111624
  • Alemi A, Corman F, Lodewijks G. Condition monitoring approaches for the detection of railway wheel defects. Proc IMechE Part F J Rail Rapid Transit. 2017;231(8):961–981. DOI:10.1177/0954409716656218
  • Barke D, Chiu W. Structural health monitoring in the railway industry: a review. Struct Health Monit. 2005;4(1):81–94. DOI:10.1177/1475921705049764
  • Johansson A, Nielsen JCO. Out-of-round railway wheels—wheel-rail contact forces and track response derived from field tests and numerical simulations. Proc IMechE Part F J Rail Rapid Transit. 2003;217(2):135–146. DOI:10.1243/095440903765762878
  • Palo M, Galar D, Nordmark T, et al. Condition monitoring at the wheel/rail interface for decision-making support. Proc IMechE Part F J Rail Rapid Transit. 2014;228(1):705–715. DOI:10.1177/0954409714526164
  • Reitmann E, Fröhling RD, Hettasch G. Identification and monitoring of polygonised railway wheels using existing wheel impact monitoring measurement data. In: Proceedings of the 11th international heavy haul association conference (IHHA 2017); Cape Town, South Africa; 2–6 September 2017. p. 826–833.
  • Skarlatos D, Karakasis K, Trochidis A. Railway wheel fault diagnosis using a fuzzy-logic method. Appl Acoust. 2004;65(10):951–966. DOI:10.1016/j.apacoust.2004.04.003
  • Pocock J, Rasaiah W. Wheel monitoring methodologies. In: Proceedings of the 13th international wheelset conference (IWC 2001); Rome, Italy; 2001.
  • Feng Q, Cui J, Zhao Y, et al. A dynamic and quantitative method for measuring wheel flats and abrasion of trains). In: Proceedings of the 15th world conference on Non-destructive testing (WCNDT 2000); Rome, Italy; 15–21 October 2000.
  • Wu X, Rakheja S, Wu H, et al. A study of polygonal wheel wear through a field test programme. Veh Syst Dyn. 2019;57(6):914–934. DOI:10.1080/00423114.2018.1494842
  • Cai W, Chi M, Wu X, et al. A long-term tracking test of high-speed train with wheel polygonal wear. Veh Syst Dyn. 2021;59(11):1735–1758. DOI:10.1080/00423114.2020.1786592
  • Sun Q, Chen C, Kemp A, et al. An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box. Mech Syst Signal Process. 2021;153(2):107540. DOI:10.1016/j.ymssp.2020.107540
  • Song Y, Liang L, Du Y, et al. Railway polygonized wheel detection based on numerical time-frequency analysis of axle-box acceleration. Appl Sci. 2020;10(5):1613. DOI:10.3390/app10051613
  • Chen S, Wang K, Zhou Z, et al. Quantitative detection of locomotive wheel polygonization under non-stationary conditions by adaptive chirp mode decomposition. Rail Eng Sci. 2020;30:129–147. DOI:10.1007/s40534-022-00272-3
  • Wang Q, Xiao Z, Zhou J, et al. A new DFT-based dynamic detection framework for polygonal wear state of railway wheel. Veh Syst Dyn. 2022. DOI:10.1080/00423114.2022.2100797
  • Wang Q, Xiao Z, Zhou J, et al. A dynamic detection method for polygonal wear of railway wheel based on parametric power spectral estimation. Veh Syst Dyn. 2022. DOI:10.1080/00423114.2022.2117058
  • Ye Y, Zhu B, Huang P, et al. OORNet: a deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains. Measurement (Mahwah NJ). 2022;199:111268. DOI:10.1016/j.measurement.2022.111268
  • Ye Y, Huang C, Zeng J, et al. Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection. Mech Syst Signal Process. 2023;186(1):109856. DOI:10.1016/j.ymssp.2022.109856
  • Feng C, Ma Y, Tu X, et al. A note on the concordance correlation coefficient. Adv Appl Stat. 2010;15(2):195–205.
  • Brandt A, Brincker R. Integrating time signals in frequency domain-comparison with time domain integration. Measurement (Mahwah NJ). 2014;58:511–519. DOI:10.1016/j.measurement.2014.09.004
  • Wei L, Zeng J, Gao H, et al. Study of wheel Out-of-roundness identification approach for high-speed trains based on axlebox high-frequency vibration characteristic. J Southwest Jiaotong Univ. 2022 (in Chinese). DOI:10.3969/j.issn.0258-2724.20211085
  • EN 15610. (2019). Railway applications- Acoustics-Rail and wheel roughness measurement related to rolling noise generation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.