Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
331
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

On-board vibration-based robust and unsupervised degradation detection in railway suspensions under various travelling speeds via a Multiple Model framework

, &
Pages 1446-1470 | Received 20 Oct 2022, Accepted 05 Jul 2023, Published online: 31 Jul 2023

References

  • Barke D, Chiu K. Structural health monitoring in the railway industry: a review. Struct Health Monit. 2005;4(1):81–93. doi: 10.1177/1475921705049764
  • Secondary suspension failure on a train at Connolly station. Railway Accident Investigation Unit; 2010. Available from: https://www.raiu.ie/investigations/
  • Derailment of a passenger train near Clogwyn y Gwin Southfoot crossing, Welsh Highland Railway. Railway Accident Investigation Brunch; 2018. Available from: https://www.gov.uk/government/publications/
  • Ngigi RW, Pislaru C, Ball A, et al. Modern techniques for condition monitoring of railway vehicle dynamics. J Phys Conf Ser. 2012;364:012016. doi: 10.1088/1742-6596/364/1/012016
  • Ward CP, Weston PF, Stewart EJC, et al. Condition monitoring opportunities using vehicle-based sensors. Proc Inst Mech Eng F: J Rail Rapid Transit. 2011;225(2):202–218. doi: 10.1177/09544097JRRT406
  • Li C, Luo S, Cole C, et al. An overview: modern techniques for railway vehicle on-board health monitoring systems. Veh Syst Dyn. 2017;55(7):1045–1070. doi: 10.1080/00423114.2017.1296963
  • Bruni S, Goodall R, Mei TX, et al. Control and monitoring for railway vehicle dynamics. Veh Syst Dyn. 2007;45(7-8):743–779. doi: 10.1080/00423110701426690
  • Bernal E, Spiryagin M, Cole C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review. IEEE Sens J. 2019;19(1):4–24. doi: 10.1109/JSEN.2018.2875160
  • Iwnicki S. Handbook of railway vehicle dynamics. 1st ed. Boca Raton: CRC Press; 2006.
  • Fassois SD, Sakellariou JS. Statistical time series methods for SHM. In: Boller C, Chang FK, Fujino Y, editors. Encyclopedia of structural health monitoring. John Wiley & Sons, Ltd; 2009.
  • Aravanis TCI, Sakellariou JS, Fassois SD. Spectral analysis of railway vehicle vertical vibration under normal operating conditions. Int J Rail Transp. 2016;4(4):193–207. doi: 10.1080/23248378.2016.1221749
  • Strano S, Terzo M. Review on model-based methods for on-board condition monitoring in railway vehicle dynamics. Adv Mech Eng. 2019;11(2):1–10. doi: 10.1177/1687814019826795
  • Mori H, Tsunashima H. Condition monitoring of railway vehicle suspension using multiple model approach. J Mech Syst Transp Log. 2010;3(1):243–258. doi: 10.1299/jmtl.3.243.
  • Jesussek M, Ellermann K. Fault detection and isolation for a nonlinear railway vehicle suspension with a hybrid extended Kalman filter. Veh Syst Dyn. 2013;51(10):1489–1501. doi: 10.1080/00423114.2013.810764
  • Jesussek M, Ellermann K. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters. Veh Syst Dyn. 2014;52(12):1695–1715. doi: 10.1080/00423114.2014.959026
  • Jesussek M, Ellermann K. Fault detection and isolation for a railway vehicle by evaluating estimation residuals. Procedia IUTAM. 2015;13:14–23. doi: 10.1016/j.piutam.2015.01.004
  • Li P, Goodall R, Weston P, et al. Estimation of railway vehicle suspension parameters for condition monitoring. Control Eng Pract. 2007;15:43–55. doi: 10.1016/j.conengprac.2006.02.021
  • Liu XY, Alfi S, Bruni S. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system. Veh Syst Dyn. 2016;54(6):814–830. doi: 10.1080/00423114.2016.1164869
  • Lebel D, Soize C, Funfschilling C, et al. High-speed train suspension health monitoring using computational dynamics and acceleration measurements. Veh Syst Dyn. 2020;58(6):911–932. doi: 10.1080/00423114.2019.1601744
  • Li C, Luo S, Cole C, et al. Bolster spring fault detection strategy for heavy haul wagons. Veh Syst Dyn. 2018;56(10):1604–1621. doi: 10.1080/00423114.2017.1423090
  • Dumitriu M. Fault detection of damper in railway vehicle suspension based on the cross-correlation analysis of bogie accelerations. Mech Ind. 2019;20(1):102. doi: 10.1051/meca/2018051
  • Mei TX, Ding XJ. A model-less technique for the fault detection of rail vehicle suspensions. Veh Syst Dyn. 2008;46(sup 1):277–287. doi: 10.1080/00423110801939154
  • Girstmair B, Haigermoser A, Dietmaier P. Advantages of using statistical models for detecting faulty components in railway bogies against using simple criteria as defined in standards. Veh Syst Dyn. 2021;59(1):56–69. doi: 10.1080/00423114.2019.1662925
  • Dumitriu M. Condition monitoring of the dampers in the railway vehicle suspension based on the vibrations response analysis of the bogie. Sensors. 2022;22(9):3290. doi: 10.3390/s22093290
  • Melnik R, Koziak S. Rail vehicle suspension condition monitoring – approach and implementation. J Vibroengineering. 2017;19(1):487–501. doi: 10.21595/jve
  • Ye Y, Huang P, Zhang Y. Deep learning-based fault diagnostic network of high-speed train secondary suspension systems for immunity to track irregularities and wheel wear. Railw Eng Sci. 2021;30:96–116. doi: 10.1007/s40534-021-00252-z
  • Gasparetto L, Alfi S, Bruni S. Data-driven condition-based monitoring of high-speed railway bogies. Int J Rail Transp. 2013;1(1-2):42–56. doi: 10.1080/23248378.2013.790137
  • Wei X, Jia L, Guo K, et al. On fault isolation for rail vehicle suspension systems. Veh Syst Dyn. 2014;52(6):847–873. doi: 10.1080/00423114.2014.904904
  • Ye Y, Zhang Y, Wang Q, et al. Fault diagnosis of high-speed train suspension systems using multiscale permutation entropy and linear local tangent space alignment. Mech Syst Signal Process. 2020;138:106565. doi: 10.1016/j.ymssp.2019.106565
  • Li Y, Liu F, Wang S, et al. Multiscale symbolic Lempel-Ziv: an effective feature extraction approach for fault diagnosis of railway vehicle systems. IEEE Trans Ind Inform. 2021;17(1):199–208. doi: 10.1109/TII.9424
  • Aravanis TCI, Sakellariou JS, Fassois SD. A stochastic functional model based method for random vibration based robust fault detection under variable non-measurable operating conditions with application to railway vehicle suspensions. J Sound Vib. 2020;466:115006. doi: 10.1016/j.jsv.2019.115006
  • Sakellariou JS, Petsounis KA, Fassois SD. Vibration based fault diagnosis for railway vehicle suspensions via a functional model based method: A feasibility study. J Mech Sci Technol. 2015;29(2):471–484. doi: 10.1007/s12206-015-0107-0
  • Vamvoudakis-Stefanou KJ, Sakellariou JS, Fassois SD. Vibration-based damage detection for a population of nominally identical structures: unsupervised multiple model (MM) statistical time series type methods. Mech Syst Signal Process. 2018;111:149–171. doi: 10.1016/j.ymssp.2018.03.054
  • Poulimenos AG, Sakellariou JS. A transmittance-based methodology for damage detection under uncertainty: an application to a set of composite beams with manufacturing variability subject to impact damage and varying operating conditions. Struct Health Monit. 2019;18(1):318–333. doi: 10.1177/1475921718779190
  • Zhang H, Schulz MJ, Naser A, et al. Structural health monitoring using transmittance functions. Mech Syst Signal Process. 1999;13(5):765–787. doi: 10.1006/mssp.1999.1228
  • Ljung L. System identification: theory for the user. 2nd ed. New Jersey: Prentice Hall PTR; 1999.
  • Simpack [Dassault systemes]; 2019. Available from: https://www.3ds.com/
  • Attiko Metro S.A. [Website]; 2022. Available from: https://www.ametro.gr/?lang=en
  • Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. Hoboken: John Wiley & Sons; 2012.
  • Vlachospyros G, Kaliorakis N, Iliopoulos IA, et al. On the problem of on-board vibration-based fault detection in railway suspensions under varying operating conditions: a feasibility study. In: Proceedings of the 11th International Conference on Structural Dynamics; Athens, Greece; 2020. p. 1–12.
  • Bruni S, Vinolas J, Berg M, et al. Modelling of suspension components in a rail vehicle dynamics context. Veh Syst Dyn. 2011;49(7):1021–1072. doi: 10.1080/00423114.2011.586430
  • Docquier N, Fisette P, Jeanmart H. Multiphysic modelling of railway vehicles equipped with pneumatic suspensions. Veh Syst Dyn. 2007;45(6):505–524. doi: 10.1080/00423110601050848
  • Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11(1):1–13. doi: 10.1080/00423118208968684
  • Gialleonardo ED, Braghin F, Bruni S. The influence of track modelling options on the simulation of rail vehicle dynamics. J Sound Vib. 2012;331(19):4246–4258. doi: 10.1016/j.jsv.2012.04.024
  • Naeimi M, Zakeri JA, Esmaeili M, et al. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system. Veh Syst Dyn. 2015;53(1):88–111. doi: 10.1080/00423114.2014.998243
  • Haigermoser A, Luber B, Rauh J, et al. Road and track irregularities: measurement, assessment and simulation. Veh Syst Dyn. 2015;53(7):878–957. doi: 10.1080/00423114.2015.1037312
  • ERRIB176. Preliminary studies and specifications – specification for a bogie with improved curving characteristics – specifications for a bogie with improved curving characteristics for body tilt. Utrecht, Netherlands; 1989.
  • Brenan KE, Campbell SL, Petzold LR. Numerical solution of initial-value problems in differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics; 1995.
  • Bruni S, Meijaard JP, Rill G, et al. State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody Syst Dyn. 2020;49(1):1–32. doi: 10.1007/s11044-020-09735-z
  • Erviti LM. Influence of repeated and delayed excitations in combined subspace identification. Veh Syst Dyn. 2017;55(12):1884–1908. doi: 10.1080/00423114.2017.1337208
  • Iliopoulos IA, Sakellariou JS, Fassois SD. Parametric spectral estimation and dynamics identification for a traveling surface vehicle. In: Proceedings of the 11th International Conference on Structural Dynamics; Athens Greece; 2020. p. 1–12.
  • Press WH, Teukolsky SA, Vetterling WT, et al. Numerical recipes: the art of scientific computing. 3rd ed. New York: Cambridge University Press; 2007.
  • Yan R, Gao RX. Approximate entropy as a diagnostic tool for machine health monitoring. Mech Syst Signal Process. 2007;21(2):824–839. doi: 10.1016/j.ymssp.2006.02.009
  • Yan R, Liu Y, Gao RX. Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines. Mech Syst Signal Process. 2012;29:474–484. doi: 10.1016/j.ymssp.2011.11.022
  • Zheng J, Pan H, Yang S, et al. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mech Syst Signal Process. 2018;99:229–243. doi: 10.1016/j.ymssp.2017.06.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.