Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
326
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Modelling, hardware-in-the-loop tests and numerical simulation of magneto-rheological semi-active primary suspensions in a railway vehicle

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1471-1494 | Received 19 Feb 2023, Accepted 12 Jul 2023, Published online: 26 Jul 2023

References

  • Diana G, Cheli F, Collina A, et al. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Veh Syst Dyn. 2002;38:165–183. doi:10.1076/vesd.38.3.165.8287
  • Zhou J, Goodall R, Ren L, et al. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2009;223:461–471. doi:10.1243/09544097JRRT272
  • Fu B, Giossi RL, Persson R, et al. Active suspension in railway vehicles: a literature survey. Railw. Eng Sci. 2020;28:3–35. doi:10.1007/s40534-020-00207-w
  • Fu B, Bruni S. An examination of alternative schemes for active and semi-active control of vertical car-body vibration to improve ride comfort. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2022;236:386–405. doi:10.1177/09544097211022108
  • Dumitriu M. A new passive approach to reducing the carbody vertical bending vibration of railway vehicles. Veh Syst Dyn. 2017;55:1787–1806. doi:10.1080/00423114.2017.1330962
  • Goodall R, Freudenthaler G, Dixon R. Hydraulic actuation technology for full- and semi-active railway suspensions. Veh Syst Dyn. 2014;52:1642–1657. doi:10.1080/00423114.2014.953181
  • Qazizadeh A, Persson R, Stichel S. On-track tests of active vertical suspension on a passenger train. Veh Syst Dyn. 2015;53:798–811. doi:10.1080/00423114.2015.1015429
  • Foo E, Goodall RM. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators. Control Eng Pract. 2000;8:507–518. doi:10.1016/S0967-0661(99)00188-4
  • Huang C, Zeng J, Luo G, et al. Numerical and experimental studies on the car body flexible vibration reduction due to the effect of car body-mounted equipment. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2018;232:103–120. doi:10.1177/0954409716657372
  • Wang Q, Zeng J, Wu Y, et al. Study on semi-active suspension applied on carbody underneath suspended system of high-speed railway vehicle. J Vib Control. 2020;26:671–679. doi:10.1177/1077546319889863
  • Gong D, Liu G, Zhou J. Research on mechanism and control methods of carbody chattering of an electric multiple-unit train. Multibody Syst Dyn. 2021;53:135–172. doi:10.1007/s11044-021-09779-9
  • Sugahara Y, Kazato A, Koganei R, et al. Suppression of vertical bending and rigid-body-mode vibration in railway vehicle car body by primary and secondary suspension control: results of simulations and running tests using shinkansen vehicle. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2009;223:517–531. doi:10.1243/09544097JRRT265
  • Sugahara Y, Takigami T, Koganei R. Suppression of vertical bending vibration in railway car bodies by primary suspension damping control (results of running tests using Shinkansen vehicles). In: Proc. 21st Int. Symp. Dyn. Veh. Roads Tracks (IAVSD 2009), 2009: p. 1–12.
  • Fu B, Liu B, Di Gialleonardo E, et al. Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle. Veh Syst Dyn. 2022: 1–25. doi:10.1080/00423114.2022.2128827
  • Yang S, Zhao Y, Liu Y, et al. A new semi-active control strategy on lateral suspension systems of high-speed trains and its application in HIL test rig. Veh Syst Dyn. 2023;61:1317–1344. doi:10.1080/00423114.2022.2081221
  • Jin T, Liu Z, Sun S, et al. Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles. Mech Syst Signal Process. 2020;135:106338. doi:10.1016/j.ymssp.2019.106338
  • Shin Y-J, You W-H, Hur H-M, et al. Improvement of ride quality of railway vehicle by semiactive secondary suspension system on roller rig using magnetorheological damper, Adv. Mech Eng. 2014;6:298382. doi:10.1155/2014/298382
  • Zong L-H, Gong X-L, Xuan S-H, et al. Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers. Veh Syst Dyn. 2013;51:600–626. doi:10.1080/00423114.2012.758858
  • n.d. https://www.speedgoat.com/products-services/real-time-target-machines/performance-real-time-target-machine.
  • Spencer BF, Dyke SJ, Sain MK, et al. Phenomenological model for magnetorheological dampers. J Eng Mech. 1997;123:230–238. doi:10.1061/(ASCE)0733-9399(1997)123:3(230)
  • Wang DH, Liao WH. Magnetorheological fluid dampers: A review of parametric modelling. Smart Mater Struct. 2011;20:023001. doi:10.1088/0964-1726/20/2/023001.
  • Dahl PR. Solid friction damping of mechanical vibrations. AIAA J. 1976;14:1675–1682. doi:10.2514/3.61511
  • Yang G, Spencer BF, Jung H-J, et al. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. J Eng Mech. 2004;130:1107–1114. doi:10.1061/(ASCE)0733-9399(2004)130:9(1107)
  • n.d. https://ww2.mathworks.cn/help/sldo/parameter-estimation.html.
  • Savaresi SM, Spelta C. A single-sensor control strategy for semi-active suspensions. IEEE Trans Control Syst Technol. 2009;17:143–152. doi:10.1109/TCST.2008.906313
  • Karnopp D. Active and semi-active vibration isolation. J Mech Des 1995;117:177–185. doi:10.1115/1.2836452
  • Gu ZQ, Oyadiji SO. Application of MR damper in structural control using ANFIS method. Comput Struct. 2008;86:427–436. doi:10.1016/j.compstruc.2007.02.024
  • Jung HJ, Spencer BFJ, Ni YQ, et al. State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications. Struct Eng Mech. 2004;17:493–526. doi:10.12989/sem.2004.17.3_4.493
  • Research report of project RUN2RAIL, Deliverable 3.2 – New actuation systems for conventional vehicles and an innovative concept for a two-axle vehicle, n.d. Available from: http://www.run2rail.eu/Page.aspx?CAT=DELIVERABLES&IdPage=06c1be36-4a7a-42e8-9bed-bfe71c3134be.
  • Savaresi SM, Spelta C. Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension. J Dyn Syst Meas Control Trans ASME. 2007;129:382–392. doi:10.1115/1.2745846
  • Savaresi SM, Silani E, Bittanti S. Acceleration-Driven-Damper (ADD): An optimal control algorithm for comfort-oriented semiactive suspensions. J Dyn Syst Meas Control Trans ASME. 2005;127:218–229. doi:10.1115/1.1898241
  • El Majdoub K, Ghani D, Giri F, et al. Adaptive semi-active suspension of quarter-vehicle With magnetorheological damper. J Dyn Syst Meas Control. 2015;137:1–12. doi:10.1115/1.4028314
  • EN 12299. n.d. Railway applications. Ride comfort for passengers. Measurement and evaluation.
  • Wu L, Qiu X, Guo Y. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems. Mech Syst Signal Process. 2018;106:13–23. doi:10.1016/j.ymssp.2017.12.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.