Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 6
1,299
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An integrated path-tracking and control allocation method for autonomous racing electric vehicles

, , , , &
Pages 1517-1540 | Received 04 Mar 2022, Accepted 21 Jul 2023, Published online: 08 Aug 2023

References

  • Markkula G, Benderius O, Wolff K, et al. A review of near collision driver behavior models. Hum Factors. 2012;54(6):1117–1143. doi:10.1177/0018720812448474
  • Edelmann J, Pl¨ochl M, Reinalter W, et al. A passenger car driver model for higher lateral accelerations. Veh Syst Dyn. 2007;45(12):1117–1129. doi:10.1080/00423110701203644
  • Chatzikomis C, Spentzas KN. A path-following driver model with longitudinal and lateral control of vehicle’s motion. Eng Res. 2009;73(4):257–266. doi:10.1007/s10010-009-0112-5
  • Plochl M, Edelmann J. Driver models in automobile dynamics application. Veh Syst Dyn. 2007;45(7–8):699–741. doi:10.1080/00423110701432482
  • Sharp RS, Casanova D, Symonds P. A mathematical model for driver steering control, with design, tuning and performance results. Veh Syst Dyn. 2000;33:289–326. doi:10.1076/0042-3114(200005)33:5;1-Q;FT289
  • Attia R, Orjuela R, Basset M. Combined longitudinal and lateral control for automated vehicle guidance. Veh Syst Dyn. 2014;52(2):261–279. doi:10.1080/00423114.2013.874563
  • Roselli F, Corno M, Savaresi SM, et al. H-infinity control with look-ahead for lane keeping in autonomous vehicles. Proc. IEEE Conf. Control Technol. Appl, 2017, pp. 2220–2225.
  • Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehicle systems. IEEE Trans Control Syst Technol. May 2007;15(3):566–580. doi:10.1109/TCST.2007.894653
  • Tagne G, Talj R, Charara A. Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. Proc. IEEE Intell. Veh. Symp, 2013, pp. 678–683.
  • Gao Y, Cao DP, Shen YH. Path-following control by dynamic virtual terrain field for articulated steer vehicles. Veh Syst Dyn. 2019;58:1–25. doi:10.1080/00423114.2019.1648837
  • Guo HY, Liu J, Cao DP, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics. 2018;50:422–433. doi:10.1016/j.mechatronics.2017.02.001
  • De Castro R, Tanelli M, Araújo RE, et al. Minimum-time path-following for highly redundant electric vehicles. IEEE Trans Control Syst Technol. 2015;24(2):487–501. doi:10.1109/TCST.2015.2458773
  • Chatzikomis C, Sorniotti A, Gruber P, et al. Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Trans Intell Veh. 2018;3(4):559–570. doi:10.1109/TIV.2018.2874529
  • Fujimoto H, Maeda K. Optimal yaw-rate control for electric vehicles with active front-rear steering and four-wheel driving-braking force distribution. Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc., 2013, pp. 6514–6519.
  • Tjønnås J, Johansen TA. Stabilization of automotive vehicle using active steering and adaptive brake control allocation. IEEE Trans Control Syst Technol. 2010;18(3):545–558. doi:10.1109/TCST.2009.2023981
  • Wang J, Longoria RG. Coordinated and reconfigurable vehicle dynamics control. IEEE Trans Control Syst Technol. 2009;17(3):723–732. doi:10.1109/TCST.2008.2002264
  • Chen Y, Wang J. Adaptive energy-efficient control allocation for planar motion control of over-actuated electric ground vehicles. IEEE Trans Control Syst Technol. 2014;22(4):1362–1373. doi:10.1109/TCST.2013.2287560
  • Li B, Du H, Li W, et al. Integrated dynamics control and energy efficient optimization for overactuated electric vehicles. Asian J Control. 2018;20(5):1952–1966. doi:10.1002/asjc.1686
  • Guo J, Luo Y, Li K, et al. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation. Mech Syst Signal Process. 2018;105:183–199. doi:10.1016/j.ymssp.2017.12.018
  • Wang R, Hu C, Yan F, et al. Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles. IEEE Trans Intell Transp Syst. 2016;17(7):2063–2074. doi:10.1109/TITS.2015.2498172
  • Li B, Siampis E, Lin C, et al. A time-efficient integrated path-tracking and control allocation method for autonomous electric vehicle. 2019 IEEE 58th Conference on Decision and Control (CDC), pp.6700-6705, 2019.
  • Ji J, Khajepour A, Melek WW, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Trans Veh Technol. 2017;66(2):952–964. doi:10.1109/TVT.2016.2555853
  • Raffo GV, Gomes GK, Normey-Rico JE, et al. A predictive controller for autonomous vehicle path tracking. IEEE Trans Intell Transport Syst. 2009;10(1):92–102. doi:10.1109/TITS.2008.2011697
  • Kim W, Kim D, Yi K, et al. Development of a path-tracking control system based on model predictive control using infrastructure sensors. Veh Syst Dyn. 2012;50(6):1001–1023. doi:10.1080/00423114.2011.597864
  • Kim E, Kim J, Sunwoo M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int J Automot Technol. Dec, 2014;15(7):1155–1164. doi:10.1007/s12239-014-0120-9
  • Peng H, Wang W, An Q, et al. Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans Veh Technol. 2020;69(6):6053–6066. doi:10.1109/TVT.2020.2981619
  • Zhang B, Zong C, Chen G, et al. Electrical vehicle path tracking based model predictive control with a Laguerre function and exponential weight. IEEE Access. 2019;7:17082–17097. doi:10.1109/ACCESS.2019.2892746
  • Alcalá E, Puig V, Quevedo J, et al. Autonomous racing using linear parameter varying-model predictive control (lpv-mpc). Control Eng Pract. 2020;95:104270. doi:10.1016/j.conengprac.2019.104270
  • Liniger A, Domahidi A, Morari M. Optimization-based autonomous racing of 1:43 scale RC cars. Optim Control Appl Meth. 2015;36:628–647. doi:10.1002/oca.2123
  • Kabzan J, Hewing L, Liniger A, et al. Learning-Based model predictive control for autonomous racing. IEEE Robot Automat Lett. Oct. 2019;4(4):3363–3370. doi:10.1109/LRA.2019.2926677
  • Domahidi A, Jerez J. FORCES Professional. embotech GmbH, Zürich, Switzerland, Tech. Rep., Jul. 2014. [Online]. Available: http://embotech.com/FORCES-Pro.
  • Velenis E, Tsiotras P. Minimum-Time travel for a vehicle with acceleration limits: theoretical analysis and receding-horizon implementation. J Optim Theory Appl. 2008;138:275–296. doi:10.1007/s10957-008-9381-7
  • Li B, Du H, Li W. Comparative study of vehicle tyre–road friction coefficient estimation with a novel cost-effective method. Veh Syst Dyn. 2014;52(8):1066–1098. doi:10.1080/00423114.2014.920090
  • Zanelli A, Domahidi A, Jerez JL, et al. Forces NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs. Int J Control. 2017;93:1–17. doi:10.1080/00207179.2017.1316017
  • Li B, Ahmadi J, Lin C, et al. Integrated path-tracking and control allocation controller for autonomous electric vehicle under limited handling condition. 2020 IEEE Intelligent Vehicle Symposium (IV), pp.547-552, 2020.
  • Boada B, Boada M, Díaz V. Fuzzy-logic applied to yaw moment control for vehicle stability. Veh Syst Dyn. 2005;43:753–770. doi:10.1080/00423110500128984
  • Zhao Y, Zhang J. Yaw stability control of a four-independent-wheel drive electric vehicle. Int J Electric Hybrid Veh. 2009;2(1):64–76. doi:10.1504/IJEHV.2009.027677
  • Domahidi A, Zgraggen A, Zeilinger MN, et al. Efficient interior point methods for multistage problems arising in receding horizon control. Conference on Decision and Control (CDC), Maui, HI, USA, December 2012, pp.668–674.
  • Xu S, Peng H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans Intell Transp Syst. 2019;21(1):48–58. doi:10.1109/TITS.2019.2892926
  • Wang Z, Bai Y, Wang J, et al. Vehicle path-tracking linear-time-varying model predictive control controller parameter selection considering central process unit computational load. J Dyn Syst Meas Contr. 2019;141(5):051004. doi:10.1115/1.4042196
  • Bock H, Plitt K. A multiple shooting algorithm for direct solution of optimal control problems. Proceedings of the 9th IFAC World Congress (pp. 242–247); 1984. Budapest: Pergamon Press.