354
Views
3
CrossRef citations to date
0
Altmetric
Articles

COVID-19 effects on transport-related air pollutants: insights, evaluations, and policy perspectives

ORCID Icon & ORCID Icon
Pages 484-517 | Received 09 Feb 2023, Accepted 01 Jun 2023, Published online: 19 Jun 2023

References

  • Abu-Rayash, A., & Dincer, I. (2020). Analysis of mobility trends during the COVID-19 coronavirus pandemic: Exploring the impacts on global aviation and travel in selected cities. Energy Research & Social Science, 68, 101693. https://doi.org/10.1016/j.erss.2020.101693
  • Advani, M., Sharma, N., & Dhyani, R. (2021). Mobility change in Delhi due to COVID and its’ immediate and long term impact on demand with intervened non motorized transport friendly infrastructural policies. Transport Policy, 111, 28–37. https://doi.org/10.1016/j.tranpol.2021.07.008
  • Afotey, B., Sattler, M., Parsaeifard, N., Pearson, Y., Chakraborty, M., & Hada, S. (2022). Impact of corona virus stay-at-home policies on traffic emissions and ambient pollutant concentrations in Ghana. West Africa. Engineered Science, 17, 285–291. https://doi.org/10.30919/es8d43
  • Alam, M. J., Shahrier, H., Anik, M. A. H., & Habib, M. A. (2022). Activity-based integrated modelling for assessing COVID-19 impacts on transport operations and emissions. Transportation Letters, 1–14. https://doi.org/10.1080/19427867.2022.2122110
  • Alkaabi, K., & Abuelgasim, A. (2021). Comparative analysis of pollutant levels during lockdowns across different land-use over the emirate of Abu Dhabi. United Arab Emirates. The Arab World Geographer, 24(3), 205–220. https://doi.org/10.5555/1480-6800.24.3.205
  • Assanov, D., Kerimray, A., Batkeyev, B., & Kapsalyamova, Z. (2021). The effects of COVID-19-related driving restrictions on air quality in an industrial city. Aerosol and Air Quality Research, 21(9), 200663. https://doi.org/10.4209/aaqr.200663
  • Azad, S., & Ghandehari, M. (2022). Emissions of nitrogen dioxide in the northeast U.S. During the 2020 COVID-19 lockdown. Journal of Environmental Management, 312, 114902. https://doi.org/10.1016/j.jenvman.2022.114902
  • Badyda, A., Brzeziński, A., Dybicz, T., Jesionkiewicz-Niedzińska, K., Olszewski, P., Osińska, B., … Mucha, D. (2022). Impact of COVID-19 mobility changes on air quality in Warsaw. Applied Sciences (Switzerland), 12(15). Article number 7372. https://doi.org/10.3390/app12157372
  • Bauranov, A., Parks, S., Jiang, X., Rakas, J., & González, M. C. (2021). Quantifying the resilience of the U.S. Domestic aviation network during the COVID-19 pandemic. Frontiers in Built Environment, 7, 642295. https://doi.org/10.3389/fbuil.2021.642295
  • Bazzo-Vieira, J. P., Braga, C. K. V., & Pereira, R. H. (2022). The impact of COVID-19 on air passenger demand and CO2 emissions in Brazil. Energy Policy, 164, 112906. https://doi.org/10.1016/j.enpol.2022.112906
  • Beno, M. (2021). Face-to-display working: Decarbonisation potential of not commuting to work before COVID-19 and during and after lockdowns. Academic Journal of Interdisciplinary Studies, 10(3), 17–17. https://doi.org/10.36941/ajis-2021-0060
  • Black, W. R. (2010). Sustainable transportation: Issues and solutions. The Guilford Press.
  • Bontempi, E., Carnevale, C., Cornelio, A., Volta, M., & Zanoletti, A. (2022). Analysis of the lockdown effects due to the COVID-19 on air pollution in Brescia (Lombardy). Environmental Research, 212, 113193. https://doi.org/10.1016/j.envres.2022.113193
  • Brown, L., Barnes, J., & Hayes, E. (2021). Traffic-related air pollution reduction at UK schools during the COVID-19 lockdown. Science of the Total Environment, 780, 146651. https://doi.org/10.1016/j.scitotenv.2021.146651
  • Calafiore, A., Macdonald, J. L., & Singleton, A. (2022). Decomposing the temporal signature of nitrogen dioxide declines during the COVID-19 pandemic in UK urban areas. Applied Spatial Analysis and Policy, 1–25. https://doi.org/10.1007/s12061-022-09438-2
  • Camargo-Caicedo, Y., Mantilla-Romo, L. C., & Bolaño-Ortiz, T. R. (2021). Emissions reduction of greenhouse gases, ozone precursors, aerosols and acidifying gases from road transportation during the COVID-19 lockdown in Colombia. Applied Sciences, 11(4), 1458. https://doi.org/10.3390/app11041458
  • Castillo, C., Viu-Roig, M., & Alvarez-Palau, E. J. (2022). COVID-19 lockdown as an opportunity to rethink urban freight distribution: Lessons from the Barcelona metropolitan area. Transportation Research Interdisciplinary Perspectives, 14, 100605. https://doi.org/10.1016/j.trip.2022.100605
  • Caulfield, B., & Charly, A. (2022). Examining the potential environmental and travel time saved benefits of remote working hubs. Transport Policy, 127, 139–147. https://doi.org/10.1016/j.tranpol.2022.08.017
  • Ceccato, R., Baldassa, A., Rossi, R., & Gastaldi, M. (2022). Potential long-term effects of COVID-19 on telecommuting and environment: An Italian case-study. Transportation Research Part D: Transport and Environment, 109, 103401. https://doi.org/10.1016/j.trd.2022.103401
  • Chang, H. H., Meyerhoefer, C. D., & Yang, F. A. (2021). COVID-19 prevention, air pollution and transportation patterns in the absence of a lockdown. Journal of Environmental Management, 298, 113522. https://doi.org/10.1016/j.jenvman.2021.113522
  • Ciarelli, G., Jiang, J., El Haddad, I., Bigi, A., Aksoyoglu, S., Prévôt, A. S., … Bianchi, F. (2021). Modeling the effect of reduced traffic due to COVID-19 measures on air quality using a chemical transport model: Impacts on the Po valley and the Swiss Plateau regions. Environmental Science: Atmospheres, 1(5), 228–240. https://doi.org/10.1039/D1EA00036E
  • Crowley, F., Daly, H., Doran, J., Ryan, G., & Caulfield, B. (2021). The impact of labour market disruptions and transport choice on the environment during COVID-19. Transport Policy, 106, 185–195. https://doi.org/10.1016/j.tranpol.2021.04.008
  • Dacre, H. F., Mortimer, A. H., & Neal, L. S. (2020). How have surface NO2concentrations changed as a result of the UK’s COVID-19 travel restrictions? Environmental Research Letters, 15(10), 104089. https://doi.org/10.1088/1748-9326/abb6a2
  • DeWeese, J., Ravensbergen, L., & El-Geneidy, A. (2022). Travel behaviour and greenhouse gas emissions during the COVID-19 pandemic: A case study in a university setting. Transportation Research Interdisciplinary Perspectives, 13, 100531. https://doi.org/10.1016/j.trip.2021.100531
  • Dhital, N. B., Wang, L. C., Yang, H. H., Lee, C. H., Shih, W. H., & Wu, C. S. (2022). Effects of the COVID-19 pandemic on public bus occupancy and real-world tailpipe emissions of gaseous pollutants per passenger kilometer traveled. Sustainable Environment Research, 32(1), 1–12. https://doi.org/10.1186/s42834-022-00146-7
  • Doundoulakis, E., Papaefthimiou, S., & Sitzimis, I. (2020). Environmental impact assessment of passenger ferries and cruise vessels: The case study of crete. European Transport, 87(15), 1–15. https://doi.org/10.48295/ET.2022.87.2
  • Du, J., Rakha, H. A., Filali, F., & Eldardiry, H. (2021). COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. International Journal of Transportation Science and Technology, 10(2), 184–196. https://doi.org/10.1016/j.ijtst.2020.11.003
  • Durán-Grados, V., Amado-Sánchez, Y., Calderay-Cayetano, F., Rodríguez-Moreno, R., Pájaro-Velázquez, E., Ramírez-Sánchez, A., … Moreno-Gutiérrez, J. (2020). Calculating a drop in carbon emissions in the strait of Gibraltar (Spain) from domestic shipping traffic caused by the COVID-19 crisis. Sustainability, 12(24), 10368. https://doi.org/10.3390/su122410368
  • EC, European Commission, Directorate-General for Mobility and Transport, van Essen, H., van Wijngaarden, L., Schroten, A., Sutter, D., Bieler, D., Maffii, S., Brambilla, M., Fiorello, D., Fermi, F., Parolin, R., & El Beyrouty, K. (2020). Handbook on the external costs of transport: version 2019–1.1, Publications Office
  • Faridi, S., Yousefian, F., Janjani, H., … Hassanvand, M. S. (2021). The effect of COVID-19 pandemic on human mobility and ambient air quality around the world: A systematic review. Urban Climate, 38, 100888. https://doi.org/10.1016/j.uclim.2021.100888
  • Feng, X., Zhang, X., He, C., & Wang, J. (2021). Contributions of traffic and industrial emission reductions to the air quality improvement after the lockdown of Wuhan and neighboring cities due to COVID-19. Toxics, 9(12), 358. https://doi.org/10.3390/toxics9120358
  • Fleuti, E. (2020). Effects of COVID-19-related air traffic restrictions on local air quality at Zurich airport. Journal of Airport Management, 15(1), 59–70.
  • Gao, C., Li, S., Liu, M., Zhang, F., Achal, V., Tu, Y., … Cai, C. (2021). Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Science of The Total Environment, 773, 145545. https://doi.org/10.1016/j.scitotenv.2021.145545
  • Gillingham, K. T., Knittel, C. R., Li, J., Ovaere, M., & Reguant, M. (2020). The short-run and long-run effects of COVID-19 on energy and the environment. Joule, 4(7), 1337–1341. https://doi.org/10.1016/j.joule.2020.06.010
  • Gössling, S., Humpe, A., Fichert, F., & Creutzig, F. (2021). COVID-19 and pathways to low-carbon air transport until 2050. Environmental Research Letters, 16(3), 034063. https://doi.org/10.1088/1748-9326/abe90b
  • Grassi, Y. S., Brignole, N. B., & Díaz, M. F. (2021). Pandemic impact on air pollution and mobility in a Latin American medium-size city. International Journal of Environmental Studies, 1–27. https://doi.org/10.1080/00207233.2021.1941662
  • Gualtieri, G., Brilli, L., Carotenuto, F., Vagnoli, C., Zaldei, A., & Gioli, B. (2020). Quantifying road traffic impact on air quality in urban areas: A COVID19-induced lockdown analysis in Italy. Environmental Pollution, 267, 115682. https://doi.org/10.1016/j.envpol.2020.115682
  • Han, B., Yao, T., Li, G., Song, Y., Zhang, Y., Dai, Q., & Yu, J. (2022). Marginal reduction in surface NO2 attributable to airport shutdown: A machine learning regression-based approach. Environmental Research, 214, 114117. https://doi.org/10.1016/j.envres.2022.114117
  • Han, P., Cai, Q., Oda, T., Zeng, N., Shan, Y., Lin, X., & Liu, D. (2021). Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Science of the Total Environment, 750, 141688. https://doi.org/10.1016/j.scitotenv.2020.141688
  • Harantová, V., Hájnik, A., Kalašová, A., & Figlus, T. (2022). The effect of the COVID-19 pandemic on traffic flow characteristics, emissions production and fuel consumption at a selected intersection in Slovakia. Energies, 15(6), 2020. https://doi.org/10.3390/en15062020
  • Heintzelman, A., Filippelli, G., & Lulla, V. (2021). Substantial decreases in U.S. Cities’ ground-based NO2 concentrations during COVID-19 from reduced transportation. Sustainability, 13(16), 9030. https://doi.org/10.3390/su13169030
  • Hwang, H., & Lee, J. Y. (2022). Impacts of COVID-19 on air quality through traffic reduction. International Journal of Environmental Research and Public Health, 19(3), 1718. https://doi.org/10.3390/ijerph19031718
  • Ibarra-Espinosa, S., Rehbein, A., Freitas, E. D. D., Martins, L., Andrade, M. D. F., & Landulfo, E. (2022). Changes in a bottom-up vehicular emissions inventory and its impact on air pollution during COVID-19 lockdown in São Paulo, Brazil. Frontiers in Sustainable Cities, 12, 1–12. https://doi.org/10.3389/frsc.2022.883112
  • Jain, S., Mane, M., Chao, H., Crossley, W., & DeLaurentis, D. (2021). Estimating the impact of novel coronavirus (COVID-19) on future fleet-level CO2 emissions and airline operations. In AIAA AVIATION 2021 FORUM, 2343. https://doi.org/10.2514/6.2021-2343
  • Jephcote, C., Hansell, A. L., Adams, K., & Gulliver, J. (2021). Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environmental Pollution, 272, 116011. https://doi.org/10.1016/j.envpol.2020.116011
  • Jiang, C., Wan, Y., Yang, H., & Zhang, A. (2021). Impacts of high-speed rail projects on CO2 emissions due to modal interactions: A review. Transportation Research Part D: Transport and Environment, 100, 103081. https://doi.org/10.1016/j.trd.2021.103081
  • Ju, Y., & Hargreaves, C. A. (2021). The impact of shipping CO2 emissions from marine traffic in western Singapore straits during COVID-19. Science of The Total Environment, 789, 148063. https://doi.org/10.1016/j.scitotenv.2021.148063
  • Kareinen, E., Uusitalo, V., Kuokkanen, A., Levänen, J., & Linnanen, L. (2022). Effects of COVID-19 on mobility GHG emissions: Case of the city of Lahti, Finland. Case Studies on Transport Policy, 10(1), 598–605. https://doi.org/10.1016/j.cstp.2022.01.020
  • Kazakos, V., Taylor, J., & Luo, Z. (2021). Impact of COVID-19 lockdown on NO2 and PM2.5 exposure inequalities in London, UK. Environmental Research, 198, 111236. https://doi.org/10.1016/j.envres.2021.111236
  • Liu, J., Tian, J., Lyu, W., & Yu, Y. (2022). The impact of COVID-19 on reducing carbon emissions: From the angle of international student mobility. Applied Energy, 317, 119136. https://doi.org/10.1016/j.apenergy.2022.119136
  • Lyu, C., Liu, X., Wang, Z., Yang, L., Liu, H., Yang, N., … Cai, B. (2023). An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China. Energy, 262, 125513. https://doi.org/10.1016/j.energy.2022.125513
  • Malinović-Milićević, S., Doljak, D., Stanojević, G., & Radovanović, M. M. (2022). Impact of the COVID-19 restrictive measures on urban traffic-related air pollution in Serbia. Frontiers in Environmental Science, 597, 1–11. https://doi.org/10.3389/fenvs.2022.823973
  • Mannarini, G., Salinas, M. L., Carelli, L., & Fassò, A. (2022). How COVID-19 affected GHG emissions of ferries in Europe. Sustainability, 14(9), 5287. https://doi.org/10.3390/su14095287
  • Mannattuparambil, P. J., Shan, Y., & Hubacek, K. (2022). The impacts of the COVID-19 pandemic on surface passenger transport and related CO2emissions during different waves. Environmental Research Communications, 4(4), 045010. https://doi.org/10.1088/2515-7620/ac6301
  • Marinello, S., Butturi, M. A., & Gamberini, R. (2021). How changes in human activities during the lockdown impacted air quality parameters: A review. Environmental Progress & Sustainable Energy, 40(4), e13672. https://doi.org/10.1002/ep.13672
  • Marz, W., & Şen, S. (2022). Does telecommuting reduce commuting emissions? Journal of Environmental Economics and Management, 116, 102746. https://doi.org/10.1016/j.jeem.2022.102746
  • Ngo, T. H., Pan, W. C., & Waits, A. (2022). Reduction in aviation volume due to COVID-19 and changes in Air pollution near the international airport in Taiwan. Aerosol and Air Quality Research, 22(4), 210297. https://doi.org/10.4209/aaqr.210297
  • Nižetić, S. (2020). Impact of coronavirus (Covid-19) pandemic on air transport mobility, energy, and environment: A case study. International Journal of Energy Research, 44(13), 10953–10961. https://doi.org/10.1002/er.5706
  • Noviarini, C., Rahman, A., Wayan Koko Suryawan, I., Septiariva, I. Y., & Suhardono, S. (2022). Global warming potential from public transportation activities during COVID-19 pandemic in Jakarta, Indonesia. International Journal of Safety and Security Engineering, 223–227. https://doi.org/10.18280/ijsse.120211
  • Nurjani, E., Hafizha, K. P., Purwanto, D., Ulumia, F., Widyastuti, M., Sekaranom, A. B., & Suarma, U. (2021). Carbon emissions from the transportation sector during the COVID-19 pandemic in the special region of Yogyakarta, Indonesia. IOP Conference Series: Earth and Environmental Science, 940(1). https://doi.org/10.1088/1755-1315/940/1/012039
  • Oda, T., Haga, C., Hosomi, K., Matsui, T., & Bun, R. (2021). Errors and uncertainties associated with the use of unconventional activity data for estimating CO2emissions: The case for traffic emissions in Japan. Environmental Research Letters, 16(8), 084058. https://doi.org/10.1088/1748-9326/ac109d
  • Odediran, E. T., Yusuf, O., & Adeniran, A. (2022). Impacts of COVID-19 lockdown on concentration levels of traffic-related Air pollutants in ibadan -a west African city. Nigerian Journal of Technological Development, 19(3), 206–222. https://doi.org/10.4314/njtd.v19i3.3
  • OECD, Organisation for Economic Co-operation and Development. (2023). Freight transport. Online: https://data.oecd.org/transport/freight-transport.htm [13.01.2023].
  • Pianta, S., Brutschin, E., van Ruijven, B., & Bosetti, V. (2021). Faster or slower decarbonization? Policymaker and stakeholder expectations on the effect of the COVID-19 pandemic on the global energy transition. Energy Research & Social Science, 76, 102025. https://doi.org/10.1016/j.erss.2021.102025
  • Piccoli, A., Agresti, V., Balzarini, A., Bedogni, M., Bonanno, R., Collino, E., … Toppetti, A. M. (2020). Modeling the effect of COVID-19 lockdown on mobility and NO2 concentration in the Lombardy region. Atmosphere, 11(12), 1319. https://doi.org/10.3390/atmos11121319
  • Ravina, M., Esfandabadi, Z. S., Panepinto, D., & Zanetti, M. (2021). Traffic-induced atmospheric pollution during the COVID-19 lockdown: Dispersion modeling based on traffic flow monitoring in Turin, Italy. Journal of Cleaner Production, 317, 128425. https://doi.org/10.1016/j.jclepro.2021.128425
  • Rojas, C., Muñiz, I., Quintana, M., Simon, F., Castillo, B., de la Fuente, H., … Widener, M. (2022). Short run “rebound effect” of COVID on the transport carbon footprint. Cities, 131, 104039. https://doi.org/10.1016/j.cities.2022.104039
  • Rossi, R., Ceccato, R., & Gastaldi, M. (2020). Effect of road traffic on air pollution. Experimental evidence from COVID-19 lockdown. Sustainability, 12(21), 8984. https://doi.org/10.3390/su12218984
  • Şahin, ÜA. (2020). The effects of COVID-19 measures on air pollutant concentrations at urban and traffic sites in Istanbul. Aerosol and Air Quality Research, 20(9), 1874–1885. https://doi.org/10.4209/aaqr.2020.05.0239
  • Sahraei, M. A., Kuşkapan, E., & Çodur, M. Y. (2021). Public transit usage and air quality index during the COVID-19 lockdown. Journal of Environmental Management, 286, 112166. https://doi.org/10.1016/j.jenvman.2021.112166
  • Santos, G., & Azhari, R. (2022). Can we save GHG emissions by working from home? Environmental Research Communications, 4(3), 035007. https://doi.org/10.1088/2515-7620/ac3d3e
  • Schulte-Fischedick, M., Shan, Y., & Hubacek, K. (2021). Implications of COVID-19 lockdowns on surface passenger mobility and related CO2 emission changes in Europe. Applied Energy, 300, 117396. https://doi.org/10.1016/j.apenergy.2021.117396
  • Seguel, R. J., Gallardo, L., Osses, M., Rojas, N. Y., Nogueira, T., Menares, C., … Yoshida, A. C. (2022). Photochemical sensitivity to emissions and local meteorology in bogotá, Santiago, and São Paulo. Elementa: Science of the Anthropocene, 10(1), 00044. https://doi.org/10.1525/elementa.2021.00044
  • Shammugam, S., Schleich, J., Schlomann, B., & Montrone, L. (2022). Did Germany reach its 2020 climate targets thanks to the COVID-19 pandemic? Climate Policy, 22(8), 1069–1083. https://doi.org/10.1080/14693062.2022.2063247
  • Shi, K., & Weng, J. (2021). Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters. Science of The Total Environment, 790, 148198. https://doi.org/10.1016/j.scitotenv.2021.148198
  • Shikwambana, L., & Kganyago, M. (2021). Assessing the responses of aviation-related SO2 and NO2 emissions to COVID-19 lockdown regulations in South Africa. Remote Sensing, 13(20), 4156. https://doi.org/10.3390/rs13204156
  • Sifakis, N., Aryblia, M., Daras, T., Tournaki, S., & Tsoutsos, T. (2021). The impact of COVID-19 pandemic in Mediterranean urban air pollution and mobility. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–16. https://doi.org/10.1080/15567036.2021.1895373
  • Sikorski, M., Majewski, J., & Snarski, W. (2021). Influence of the Covid-19 pandemic outbreak on ground transport CO2 emission. In E3S web of conferences (Vol. 242, p. 02003).
  • Singh, A., Bartington, S. E., Song, C., Ghaffarpasand, O., Kraftl, M., Shi, Z., … Leach, F. C. (2022). Impacts of emergency health protection measures upon air quality, traffic and public health: Evidence from Oxford, UK. Environmental Pollution, 118584–118584. https://doi.org/10.1016/j.envpol.2021.118584
  • Sobieralski, J. B., & Mumbower, S. (2022). Jet-setting during COVID-19: Environmental implications of the pandemic induced private aviation boom. Transportation Research Interdisciplinary Perspectives, 13, 100575. https://doi.org/10.1016/j.trip.2022.100575
  • Sui, Y., Zhang, H., Shang, W., Sun, R., Wang, C., Ji, J., … Shao, F. (2020). Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future. Applied Energy, 280, 115966. https://doi.org/10.1016/j.apenergy.2020.115966
  • Tamakloe, R., Park, D., & Chan, H. (2022). Discovering research topics, trends, and perspectives in COVID-19-related transportation journal articles. International Journal of Urban Sciences, 26(4), 710–738. https://doi.org/10.1080/12265934.2022.2044891
  • Tian, X., An, C., Chen, Z., & Tian, Z. (2021). Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Science of the Total Environment, 765, 144270. https://doi.org/10.1016/j.scitotenv.2020.144270
  • Toro, R., Catalán, F., Urdanivia, F. R., Rojas, J. P., Manzano, C. A., Seguel, R., … Leiva-Guzman, M. A. (2021). Air pollution and COVID-19 lockdown in a large south American city: Santiago metropolitan area, Chile. Urban Climate, 36, 100803. https://doi.org/10.1016/j.uclim.2021.100803
  • Turek, T., Diakowska, E., & Kamińska, J. A. (2021). Has COVID-19 lockdown affected on Air quality?—different time scale case study in wrocław, Poland. Atmosphere, 12(12), 1549. https://doi.org/10.3390/atmos12121549
  • Turnbull, J. C., Domingues, L. G., & Turton, N. (2022). Dramatic lockdown fossil fuel CO2decrease detected by citizen science-supported atmospheric radiocarbon observations. Environmental Science & Technology, 56(14), 9882–9890. https://doi.org/10.1021/acs.est.1c07994
  • UN, United Nations. (2021). How COVID-19 is changing the world: a statistical perspective. Online: https://unstats.un.org/unsd/ccsa/documents/covid19-report-ccsa_vol3.pdf [16/01/2023].
  • Velasco, E. (2021). Impact of Singapore’s COVID-19 confinement on atmospheric CO2 fluxes at neighborhood scale. Urban Climate, 37, 1 100822. https://doi.org/10.1016/j.uclim.2021.100822
  • Vichova, K., Veselik, P., Heinzova, R., & Dvoracek, R. (2021). Road transport and its impact on air pollution during the COVID-19 pandemic. Sustainability, 13(21), 11803. https://doi.org/10.3390/su132111803
  • Villa, R., & Monzón, A. (2021). Mobility restrictions and e-commerce: Holistic balance in Madrid centre during COVID-19 lockdown. Economies, 9(2), 57. https://doi.org/10.3390/economies9020057
  • von Schneidemesser, E., Sibiya, B., Caseiro, A., Butler, T., Lawrence, M. G., Leitao, J., … Salvador, P. (2021). Learning from the COVID-19 lockdown in Berlin: Observations and modelling to support understanding policies to reduce NO2. Atmospheric Environment: X, 12, 100122. https://doi.org/10.1016/j.aeaoa.2021.100122
  • Wang, D., Tayarani, M., He, B. Y., Gao, J., Chow, J. Y., Gao, H. O., & Ozbay, K. (2021a). Mobility in post-pandemic economic reopening under social distancing guidelines: Congestion, emissions, and contact exposure in public transit. Transportation Research Part A: Policy and Practice, 153, 151–170. https://doi.org/10.1016/j.tra.2021.09.005
  • Wang, J., Xu, X., Wang, S., He, S., & He, P. (2021b). Heterogeneous effects of COVID-19 lockdown measures on air quality in northern China. Applied Energy, 282, 116179. https://doi.org/10.1016/j.apenergy.2020.116179
  • Wang, L., Chen, X., Zhang, Y., Li, M., Li, P., Jiang, L., … Yu, S. (2021c). Switching to electric vehicles can lead to significant reductions of PM2.5 and NO2 across China. One Earth, 4(7), 1037–1048. https://doi.org/10.1016/j.oneear.2021.06.008
  • WHO, World Health Organization. (2023). Coronavirus Dashboard. Online: https://covid19.who.int/#:~:text=Globally%2C%20as%20of%205%3A54pm,vaccine%20doses%20have%20been%20administered [01.01.2023].
  • Wu, C. L., Wang, H. W., Cai, W. J., Ni, A. N., & Peng, Z. R. (2021). Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Building and Environment, 194, 107718. https://doi.org/10.1016/j.buildenv.2021.107718
  • Xiang, J., Austin, E., Gould, T., Larson, T., Shirai, J., Liu, Y., … Seto, E. (2020). Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Science of the Total Environment, 747, 141325. https://doi.org/10.1016/j.scitotenv.2020.141325
  • Xin, Y., Shao, S., Wang, Z., Xu, Z., & Li, H. (2021). COVID-2019 lockdown in Beijing: A rare opportunity to analyze the contribution rate of road traffic to air pollutants. Sustainable Cities and Society, 75, 102989. https://doi.org/10.1016/j.scs.2021.102989
  • Xu, H., Xiao, K., Pan, J., Fu, Q., Wei, X., Zhou, J., … Hu, T. (2023). Evidence of aircraft activity impact on local air quality: A study in the context of uncommon airport operation. Journal of Environmental Sciences, 125, 603–615. https://doi.org/10.1016/j.jes.2022.02.039
  • Xue, D., Liu, Z., Wang, B., & Yang, J. (2021). Impacts of COVID-19 on aircraft usage and fuel consumption: A case study on four Chinese international airports. Journal of Air Transport Management, 95, 102106. https://doi.org/10.1016/j.jairtraman.2021.102106
  • Zhang, R., & Zhang, J. (2021). Long-term pathways to deep decarbonization of the transport sector in the post-COVID world. Transport Policy, 110, 28–36. https://doi.org/10.1016/j.tranpol.2021.05.018
  • Zhang, X., Li, Z., & Wang, J. (2021). Impact of COVID-19 pandemic on energy consumption and carbon dioxide emissions in China’s transportation sector. Case Studies in Thermal Engineering, 26, 101091. https://doi.org/10.1016/j.csite.2021.101091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.