101
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Thermodynamic Analysis of Air Conditioning System for a Passenger Vehicle with Suction Line Heat Exchanger Using HFO-1234yf

ORCID Icon, ORCID Icon &

References

  • R. Prabakaran, D. M. Lal, A. Prabhakaran, and J. K. Kumar, “Experimental investigations on the performance enhancement using minichannel evaporator with integrated receiver-dryer condenser in an automotive air conditioning system,” Heat Transfer Engin., vol. 40, no. 8, pp. 667–678, 2019. DOI: 10.1080/01457632.2018.1436663.
  • S. Papasavva and S. O. Andersen, “GREEN-MAC-LCCP: life-cycle climate performance metric for mobile air conditioning technology choice,” Environ. Prog. Sustainable Energy, vol. 30, no. 2, pp. 234–247, 2011. DOI: 10.1002/ep.10465.
  • R. K. Shah, “Automotive air-conditioning systems—Historical developments, the state of technology, and future trends,” Heat Transfer Engin., vol. 30, no. 9, pp. 720–735, 2009. DOI: 10.1080/01457630802678193.
  • S. G. Kandlikar, “A roadmap for implementing minichannels in refrigeration and air- conditioning systems—current status and future directions,” Heat Transfer Engin., vol. 28, no. 12, pp. 973–985, 2007. DOI: 10.1080/01457630701483497.
  • UNEP, “The Kigali Amendment to the Montreal Protocol: HFC phase-down,” 28th Meeting of Parties to Montreal Protocol, Kigali, Rwanda, October 10–16, 2016.
  • “Directive 2006/40/EC of the European parliament and of the council of 17 May relating to emissions from air conditioning systems in motor vehicles and amending council directive 70/156/EEC,” Official J. Eur. Union, vol. 161, pp. 12–18, 2006. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:161:0012:0018:EN:PDF.
  • M. Mohanraj and J. D. A. P. Abraham, “Environment friendly refrigerant options for automobile air conditioners: a review,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 47–72, Oct. 2022. DOI: 10.1007/s10973-020-10286-w.
  • R. Prabakaran, D. M. Lal, and S. C. Kim, “A state of art review on future low global warming potential refrigerants and performance augmentation methods for vapour compression based mobile air conditioning system,” J. Therm. Anal. Calorim., vol. 148, no. 2, pp. 417–449, Aug. 2023. DOI: 10.1007/s10973-022-11485-3.
  • M.-H. Yang and R.-H. Yeh, “Theoretical analysis of optimal subcooling for single vapor-compression refrigeration systems,” Heat Transfer Engin., vol. 36, no. 10, pp. 912–925, 2015. DOI: 10.1080/01457632.2015.965103.
  • K. Takezato, et al., “Heat pump cycle using refrigerant mixtures of HFC32 and HFO1234yf,” Heat Transfer Engin., vol. 42, no. 13–14, pp. 1097–1106, 2021. DOI: 10.1080/01457632.2020.1776997.
  • A. E. Gurel, U. Agbulut, A. Ergun, and G. Yıldız, “Energy, exergy, and environmental (3E) assessments of various refrigerants in the refrigeration systems with internal heat exchanger,” Heat Trans. Res., vol. 51, no. 11, pp. 1029–1041, 2020. DOI: 10.1615/HeatTransRes.2020033716.
  • Y. Ma, Z. Liu, and H. Tian, “A review of transcritical carbon dioxide heat pump and refrigeration cycles,” Energy, vol. 55, pp. 156–172, Jun. 2013. DOI: 10.1016/j.energy.2013.03.030.
  • ANSI/ASHRAE Standard 34, Designation and Safety Classification of Refrigerants, Washington, DC: ASHRAE 2013, ISSN: 1041-2336. https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/34_2013_2015Supplement_20150210.pdf.
  • Environmental Protection Agency (EPA), “Protection of stratospheric ozone: change of listing status for certain substitutes under the significant New Alternatives Policy Program; Final Rule,” Federal Register, Rules Regulations, vol. 80, no. 138, pp. 42870–42959, Jul. 2015. https://www.govinfo.gov/content/pkg/FR-2021-05-06/pdf/2021-08968.pdf.
  • J. J. G. Pabon, A. Khosravi, J. M. Belman-Flores, L. Machado, and R. Revellin, “Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: a decade of researches,” Int. J. Refrigeration, vol. 118, pp. 104–113, Oct. 2020. DOI: 10.1016/j.ijrefrig.2020.06.014.
  • Y. Zhao, Z. Qi, J. Chen, B. Xu, and B. He, “Experimental analysis of the low-GWP refrigerant R1234yf as a drop-in replacement for R134a in a typical mobile air conditioning system, Proc. Mech. Engin. Part C: J. Mech. Engin. Sci., vol. 226, no. 11, pp. 2713–2725, 2012. DOI: 10.1177/0954406211435583.
  • G. D. Mathur, “Experimental Investigation of AC system performance with HFO-1234yf as the working fluid,” SAE technical paper, no. 2010-01-1207, Apr. 2010. DOI: 10.4271/2010-01-1207.
  • M. Direk, C. Tunckal, and F. Yuksel, “Comparative performance analysis of experimental frigorific air conditioning system using R-134a and HFO-1234yf as a refrigerant,” Therm. Sci., vol. 20, no. 6, pp. 2065–2072, 2016. DOI: 10.2298/TSCI140715130D.
  • Y. Lee and D. Jung, “A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications,” Appl. Thermal Engin., vol. 35, pp. 240–242, Mar. 2012. DOI: 10.1016/j.applthermaleng.2011.09.004.
  • E. Navarro, I. O. Martınez-Galvan, J. Nohales, and J. Gonzalvez-Macia, “Comparative experimental study of an open piston compressor working with R-1234yf, R-134a and R-290,” Int. J. Refrigeration, vol. 36, no. 3, pp. 768–775, May 2013. DOI: 10.1016/j.ijrefrig.2012.11.017.
  • M. C. Aral, M. Suhermanto, and M. Hosoz, “Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a,” Sci. Technol. Built Environ., vol. 27, no. 1, pp. 44–60, 2021. DOI: 10.1080/23744731.2020.1776067.
  • S. Daviran, et al., “A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems,” Appl. Thermal Engin., vol. 110, pp. 1091–1100, Jan. 2017. DOI: 10.1016/j.applthermaleng.2016.09.034.
  • P. O. Sotomayor and J. A. R. Parise, “Characterization and simulation of an open piston compressor for application on automotive air-conditioning systems operating with R134a, R1234yf and R290,” Int. J. Refrigeration, vol. 61, pp. 100–116, Jan. 2016. DOI: 10.1016/j.ijrefrig.2015.09.004.
  • M. Suhermanto, M. Hosoz and M. C. Aral, “Effect of ambient temperature on the performance characteristics of automotive air conditioning system using R1234yf and R134a: energy and Exergy based approaches,” AIP Conference Proceedings, vol. 1778, no. 030004, pp. 1–8, 2016. DOI: 10.1063/1.4965738.
  • V. Perez-Garcia, J. M. Belman-Flores, J. L. Rodriguez-Munoz, V. H. Rangel-Hernandez and A. Gallegos-Munoz, “Second law analysis of a mobile air conditioning system with internal heat exchanger using low GWP refrigerants,” Entropy, vol. 19, no. 4, pp. 175, Apr. 2017. DOI: 10.3390/e19040175.
  • S. Golzari, et al., “Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant,” Int. J. Refrigeration, vol. 73, pp. 134–143, Jan. 2017. DOI: 10.1016/j.ijrefrig.2016.09.009.
  • H. Cho, H. Lee, and C. Park, “Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf,” Appl. Thermal Engin., vol. 61, no. 2, pp. 563–569, Nov. 2013. DOI: 10.1016/j.applthermaleng.2013.08.030.
  • J. Navarro-Esbri, F. Moles, and A. Barragan-Cervera, “Experimental analysis of the internal heat exchanger influence on a vapour compression system performance working with R1234yf as a drop-in replacement for R134a,” Appl. Thermal Engin., vol. 59, no. 1–2, pp. 153–161, Sep. 2013. DOI: 10.1016/j.applthermaleng.2013.05.028.
  • T. Tasdemirci, E. Alptekin, and M. Hosoz, “Comparative performance of an automobile heat pump system with an internal heat exchanger using R1234yf and R134a,” IJEX, vol. 33, no. 1, pp. 98–113, 2020. DOI: 10.1504/IJEX.2020.109625.
  • P. Rajendran, S. Sidney, I. Ramakrishnan, and M. L. Dhasan, “Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant,” Proc. Institution Mech. Engineers, Part E: J. Process Mech. Engin., vol. 235, no. 3, pp. 731–742, 2021. DOI: 10.1177/0954408919881236.
  • C. Zilio, J. S. Brown, G. Schiochet, and A. Cavallini, “The refrigerant R1234yf in air conditioning systems,” Energy, vol. 36, no. 10, pp. 6110–6120, Oct. 2011. DOI: 10.1016/j.energy.2011.08.002.
  • S. Junye, L. Cichong and H. Jichao, “Experimental research and optimization on the environmental friendly R1234yf refrigerant in automobile air conditioning system,” J. Shanghai Jiaotong Univ. (Science), vol. 21, no. 5, pp. 548–556, 2016. DOI: 10.1007/s12204-016-1761-9.
  • H. Cho and C. Park, “Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds,” Appl. Thermal Engin., vol. 101, pp. 30–37, May. 2016. DOI: 10.1016/j.applthermaleng.2016.01.153.
  • P. Rajendran, M. L. Dhasan, and G. R. Narayanaswamy, “Tuning thermostatic expansion valve for implementing suction line heat exchanger in mobile air conditioning system,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 4, pp. 1–15, 2019. DOI: 10.1007/s40430-019-1680-4.
  • R. Prabakaran, D. M. Lal, and S. Devotta, “Effect of thermostatic expansion valve tuning on the performance enhancement and environmental impact of a mobile air conditioning system,” J. Therm. Anal. Calorim., vol. 143, no. 1, pp. 335–350, Jan. 2021. DOI: 10.1007/s10973-019-09224-2.
  • SAE J 2765, “Procedure for measuring system COP (Coefficient of Performance) of a mobile air conditioning system on a test bench”, 2008. https://www.sae.org/standards/content/j2765200810/
  • R. Prabakaran, S. Sidney, D. M. Lal, S. Harish, and S. C. Kim, “Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles,” J. Therm. Anal. Calorim., vol. 147, no. 8, pp. 5117–5132, Apr. 2022. DOI: 10.1007/s10973-021-10863-7.
  • J. D. A. P. Abraham and M. Mohanraj, “Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a,” J. Therm. Anal. Calorim., vol. 136, no. 5, pp. 2071–2086, 2019. DOI: 10.1007/s10973-018-7843-1.
  • R. Prabakaran, V. Sivalingam, S. C. Kim, P. G. Kumar, and G. P. Kumar, “Future refrigerants with low global warming potential for residential air conditioning system: a thermodynamic analysis and MCDM tool optimization,” Environ. Sci. Pollut. Res. Int., vol. 29, no. 52, pp. 78414–78428, Jun. 2022. DOI: 10.1007/s11356-022-21263-1.
  • J. A. P. Abraham, M. Mohanraj, M. Selvakumar, and A. K. Raj, “Experimental assessments on R430A as an environment-friendly replacement to R134a in vehicle air conditioners,” J. Braz. Soc. Mech. Sci. Eng., vol. 43, no. 3, pp. 1–18, Feb. 2021. DOI: 10.1007/s40430-021-02873-1.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exper. Thermal Fluid Sci., vol. 1, no. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • A. K. Al-Sayyab, J. Navarro-Esbrí, A. Barragán-Cervera, S. Kim, and A. Mota-Babiloni, “Comprehensive experimental evaluation of R1234yf-based low GWP working fluids for refrigeration and heat pumps,” Energy Conversion Manage., vol. 258, pp. 115378, Apr. 2022. DOI: 10.1016/j.enconman.2022.115378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.