118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermal and Electrical Performances of Thermoelectric Generator System for Different Internal Fin Structures

ORCID Icon, ORCID Icon & ORCID Icon

References

  • K. S. Garud, J. H. Seo, C. P. Cho and M. Y. Lee, “Artificial neural network and adaptive neuro-fuzzy interface system modelling to predict thermal performances of thermoelectric generator for waste heat recovery,” Symmetry, vol. 12, no. 2, pp. 259, Feb. 2020. DOI: 10.3390/sym12020259.
  • K. S. Garud, S. G. Hwang, J. W. Han and M. Y. Lee, “Review on performance enhancement of photovoltaic/thermal–thermoelectric generator systems with nanofluid cooling,” Symmetry, vol. 14, no. 1, pp. 36, Dec. 2021. DOI: 10.3390/sym14010036.
  • S. Shittu, et al., “Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance,” Renew. Sust. Energy Rev., vol. 109, pp. 24–54, Jul. 2019. DOI: 10.1016/j.rser.2019.04.023.
  • S. M. Pourkiaei, et al., “Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials,” Energy, vol. 186, pp. 115849, Nov. 2019. DOI: 10.1016/j.energy.2019.07.179.
  • A. Kaya, et al., “Design sensitivity analysis of a plate-finned air-cooled condenser for low-temperature organic Rankine cycles,” Heat Transfer Eng., vol. 38, no. 11–12, pp. 1018–1033, 2017. DOI: 10.1080/01457632.2016.1216966.
  • A. B. Zhang, et al., “Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators,” Energy Conv. Manag., vol. 166, pp. 337–342, Jun. 2018. DOI: 10.1016/j.enconman.2018.04.042.
  • Y. Wang, et al., “Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger,” Appl. Energy, vol. 218, pp. 391–401, May 2018. DOI: 10.1016/j.apenergy.2018.02.176.
  • X. Liu, et al., “Experiments and simulations on heat exchangers in thermoelectric generator for automotive application,” Appl. Thermal Eng., vol. 71, no. 1, pp. 364–370, Oct. 2014. DOI: 10.1016/j.applthermaleng.2014.07.022.
  • R. Quan, et al., “Performance investigation of an exhaust thermoelectric generator for military SUV application,” Coatings, vol. 8, no. 1, pp. 45, Jan. 2018. DOI: 10.3390/coatings8010045.
  • W. He, S. Wang and Y. Yang, “Optimal heat exchanger dimensional analysis under different automobile exhaust temperatures for thermoelectric generator system,” Energy Proc., vol. 104, pp. 366–371, Dec. 2016. DOI: 10.1016/j.egypro.2016.12.062.
  • W. He and S. Wang, “Performance comparison of different exhaust exchanger types considering peak net power and optimal dimension in a thermoelectric generator system,” Adv. Theory Simul., vol. 1, no. 4, pp. 1800012, Apr. 2018. DOI: 10.1002/adts.201800012.
  • D. Luo, R. Wang, W. Yu, Z. Sun and X. Meng, “Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery,” Appl. Thermal Eng., vol. 153, pp. 837–847, May 2019. DOI: 10.1016/j.applthermaleng.2019.03.060.
  • A. Marvão, P. J. Coelho and H. C. Rodrigues, “Optimization of a thermoelectric generator for heavy-duty vehicles,” Energy Conv. Manag., vol. 179, pp. 178–191, Jan. 2019. DOI: 10.1016/j.enconman.2018.10.045.
  • S. Bai, et al., “Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators,” Case Stud. Thermal Eng., vol. 4, pp. 99–112, Nov. 2014. DOI: 10.1016/j.csite.2014.07.003.
  • S. Rana, A. Date, A. Iqbal and A. Akbarzadeh, “Optimization model for power generation using thermoelectric generator,” Energy Proc., vol. 160, pp. 723–730, Feb. 2019. DOI: 10.1016/j.egypro.2019.02.187.
  • X. Lu, X. Yu, Z. Qu, Q. Wang and T. Ma, “Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery,” Energy Conv. Manag., vol. 150, pp. 403–414, Oct. 2017. DOI: 10.1016/j.enconman.2017.08.030.
  • C. C. Weng and M. J. Huang, “A simulation study of automotive waste heat recovery using a thermoelectric power generator,” Int. J. Thermal Sci., vol. 71, pp. 302–309, Sep. 2013. DOI: 10.1016/j.ijthermalsci.2013.04.008.
  • F. Cheng, Y. Hong, W. Zhong and C. Zhu, “Performance prediction and test of a Bi2Te3-based thermoelectric module for waste heat recovery,” J. Thermal Anal. Calorim., vol. 118, no. 3, pp. 1781–1788, Sep. 2014. DOI: 10.1007/s10973-014-4153-0.
  • H. Arasteh, R. Mashayekhi, M. Ghaneifar, D. Toghraie and M. Afrand, “Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections,” J. Thermal Anal. Calorim., vol. 141, no. 5, pp. 1669–1685, Oct. 2020. DOI: 10.1007/s10973-019-08870-w.
  • A. Massaguer, et al., “Transient behavior under a normalized driving cycle of an automotive thermoelectric generator,” Appl. Energy, vol. 206, pp. 1282–1296, Nov. 2017. DOI: 10.1016/j.apenergy.2017.10.015.
  • K. S. Garud, J. H. Seo and M. Y. Lee, “Effect of guide fin structures and boundary parameters on thermal performances of heat exchanger for waste heat recovery thermoelectric generator,” J. Korea Acad. Ind. Coop. Soc., vol. 22, no. 3, pp. 30–35, Mar. 2021. DOI: 10.5762/KAIS.2021.22.3.30.
  • J. H. Seo, K. S. Garud and M. Y. Lee, “Grey relational based Taguchi analysis on thermal and electrical performances of thermoelectric generator system with inclined fins hot heat exchanger,” Appl. Thermal Eng., vol. 184, pp. 116279, Feb. 2021. DOI: 10.1016/j.applthermaleng.2020.116279.
  • S. Baskaya, S. Karaaslan, T. Calisir, M. Zeki Yilmazoglu and T. O. Yilmaz, “Experimental and numerical study on thermoelectric generator performance applied to a condensing combi boiler,” Heat Transfer Eng., vol. 36, no. 14–15, pp. 1292–1302, 2015. DOI: 10.1080/01457632.2014.995002.
  • B. Pfeiffelmann, A. C. Benim and F. Joos, “A finite volume analysis of thermoelectric generators,” Heat Transfer Eng., vol. 40, no. 17–18, pp. 1442–1450, 2019. DOI: 10.1080/01457632.2018.1474588.
  • R. Rabari, S. Mahmud, A. Dutta and M. Biglarbegian, “Effect of convection heat transfer on performance of waste heat thermoelectric generator,” Heat Transfer Eng., vol. 36, no. 17, pp. 1458–1471, 2015. DOI: 10.1080/01457632.2015.1010925.
  • H. Jaber, T. Lemenand, M. Ramadan and M. Khaled, “Hybrid Heat Recovery System Applied to Exhaust Gases–Thermal Modeling and Case Study,” Heat Transfer Eng., vol. 42, no. 2, pp. 106–119, Nov. 2021. DOI: 10.1080/01457632.2019.1692495.
  • S. H. Park, et al., “High-power-density skutterudite-based thermoelectric modules with ultralow contact resistivity using Fe–Ni metallization layers,” ACS Appl. Energy Mater., vol. 1, no. 4, pp. 1603–1611, Mar. 2018. DOI: 10.1021/acsaem.8b00064.
  • J. H. Seo, M. S. Patil, C. P. Cho and M. Y. Lee, “Heat transfer characteristics of the integrated heating system for cabin and battery of an electric vehicle under cold weather conditions,” Int. J. Heat Mass Transfer, vol. 117, pp. 80–94, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.007.
  • M. Y. Lee, J. H. Seo, H. S. Lee and K. S. Garud, “Power generation, efficiency and thermal stress of thermoelectric module with leg geometry, material, segmentation and two-stage arrangement,” Symmetry, vol. 12, no. 5, pp. 786, May 2020. DOI: 10.3390/sym12050786.
  • J. H. Meng, X. D. Wang and W. H. Chen, “Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery,” Energy Conv. Manag., vol. 120, pp. 71–80, Jul. 2016. DOI: 10.1016/j.enconman.2016.04.080.
  • K. S. Garud, et al., “Energy, exergy, environmental sustainability and economic analyses for automotive thermoelectric generator system with various configurations,” Energy, vol. 244, pp. 122587, Apr. 2022. DOI: 10.1016/j.energy.2021.122587.
  • K. S. Garud, et al., “Thermal–electrical–structural performances of hot heat exchanger with different internal fins of thermoelectric generator for low power generation application,” J. Thermal Anal. Calorim., vol. 143, no. 1, pp. 387–419, Jan. 2021. DOI: 10.1007/s10973-020-09553-7.
  • Vehicle technologies office. “2009 advanced combustion R&D annual progress report.” U.S. Department of Energy, Washington, DC, USA. [Online]. Available: http://energy.gov/eere/vehicles/vehicle-technologies-office-annual-progress-reports. Accessed: Oct. 27, 2021.
  • D. Luo, R. Wang, W. Yu and W. Zhou, “A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery,” Appl. Energy, vol. 270, pp. 115181, Jul. 2020. DOI: 10.1016/j.apenergy.2020.115181.
  • C. Suter, Z. R. Jovanovic and A. Steinfeld, “A 1 kWe thermoelectric stack for geothermal power generation–Modeling and geometrical optimization,” Appl. Energy, vol. 99, pp. 379–385, Nov. 2012. DOI: 10.1016/j.apenergy.2012.05.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.