116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental Investigation on Cooling Performance of Borated Water During Immersion Quenching at the Saturated and Sub-Cooled Conditions

, &

References

  • M. Dharmendra, S. Suresh, C. S. Sujith Kumar and Q. Yang, “Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate,” Appl. Therm. Eng., vol. 99, pp. 61–71, Apr. 2016. DOI: 10.1016/j.applthermaleng.2015.12.081.
  • S. Ahangar Zonouzi, H. Aminfar, and M. Mohammadpourfard, “A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF,” Appl. Therm. Eng., vol. 151, pp. 11–25, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.01.099.
  • S. K. Nayak, P. C. Mishra, M. Ukamanal, and R. Chaini, “Experimental result on heat transfer during quenching of hot steel plate by spray impingement,” Heat Transf. Eng., vol. 39, no. 9, pp. 739–749, May 2018. DOI: 10.1080/01457632.2017.1341193.
  • V. Sahai and S. M. Aceves, “Determination of heat transfer during gear blank quenching,” Heat Transf. Eng., vol. 22, no. 4, pp. 56–66, Jul. 2001. DOI: 10.1080/01457630118610.
  • C. Agrawal, R. Kumar, A. Gupta, and B. Chatterjee, “Rewetting of vertical hot surface during round water jet impingement cooling,” Heat Transf. Eng., vol. 38, no. 13, pp. 1209–1221, Mar. 2017. DOI: 10.1080/01457632.2016.1239956.
  • H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, and L.-W. Hu, “On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles,” Int. J. Multiphase Flow, vol. 35, no. 5, pp. 427–438, May 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.02.004.
  • D. Ciloglu and A. Bolukbasi, “The quenching behavior of aqueous nanofluids around rods with high temperature,” Nucl. Eng. Des., vol. 241, no. 7, pp. 2519–2527, Jul. 2011. DOI: 10.1016/j.nucengdes.2011.04.023.
  • L. Zhang, L. Fan, Z. Yu, and K. Cen, “An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method,” Int. J. Heat Mass Transf., vol. 73, pp. 410–414, Jun. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.043.
  • G. Paul, P. K. Das, and I. Manna, “Leidenfrost phenomenon and rewetting of hot vertical tubes by bottom flooding using nanofluids,” Heat Transf. Eng., vol. 42, no. 16, pp. 1–16, Sep. 2020. DOI: 10.1080/01457632.2020.1794621.
  • D. G. Kang, J. H. Kim, and C. Y. Lee, “Minimum film boiling temperature and minimum heat flux in pool boiling of high-temperature cylinder quenched by aqueous surfactant solution,” J. Mech. Sci. Technol., vol. 32, no. 12, pp. 5919–5926, Dec. 2018. DOI: 10.1007/s12206-018-1143-3.
  • L. H. P. Zordão, V. A. Oliveira, G. E. Totten, and L. C. F. Canale, “Quenching power of aqueous salt solution,” Int. J. Heat Mass Transf., vol. 140, pp. 807–818, Sep. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.036.
  • B. Pattanayak and H. Kothadia, “Experimental study of critical heat flux during pool boiling on mini tubes: effect of subcooling, orientation, and dimensions,” Heat Transf. Eng., vol. 43, no. 11, pp. 896–921, 2022. DOI: 10.1080/01457632.2021.1919971.
  • J. Y. Zhang, J. Q. Li, L. Y. Jiang, L. W. Fan and Z. T. Yu, “Pool boiling heat transfer during quenching on a superhydrophilic surface in dilute aqueous saline solutions: effects of the solution concentration and type of salts,” Int. J. Heat Mass Transf., vol. 138, pp. 1117–1127, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.127.
  • S. M. Kwark, M. Amaya, H. Moon, and S. M. You, “Effect of soluble additives, boric acid (H3BO3) and salt (NaCl), in pool boiling heat transfer,” Nucl. Eng. Technol., vol. 43, no. 3, pp. 195–204, Jun. 2011. DOI: 10.5516/NET.2011.43.3.195.
  • H. M. Park, Y. H. Jeong, and S. Heo, “Effect of heater material and coolant additives on CHF for a downward facing curved surface,” Nucl. Eng. Des., vol. 278, pp. 344–351, Oct. 2014. DOI: 10.1016/j.nucengdes.2014.07.019.
  • S. Jun, J. C. Godinez, S. M. You, and H. Y. Kim, “Pool boiling heat transfer of a copper microporous coating in borated water,” Nucl. Eng. Technol., vol. 52, no. 9, pp. 1939–1944, Sep. 2020. DOI: 10.1016/j.net.2020.02.023.
  • A. Inbaoli, C. S. Sujith Kumar, and S. Jayaraj, “Experimental investigation on the effect of additives on different orientations of Al6061 cylindrical sample during immersion quenching,” Appl. Therm. Eng., vol. 204, pp. 118030, Mar. 2022. DOI: 10.1016/j.applthermaleng.2021.118030.
  • D. G. Kang, J. H. Kim, S. Kim, B. J. Zhang and C. Y. Lee, “Experimental study on pool boiling regime transitions of vertical rod quenched in aqueous surfactant solutions using inverse heat transfer analysis,” J. Mech. Sci. Technol., vol. 34, no. 11, pp. 4753–4761, Nov. 2020. DOI: 10.1007/s12206-020-1032-4.
  • J. Q. Li, et al., “An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water,” Exp. Therm. Fluid Sci., vol. 92, pp. 103–112, Apr. 2018. DOI: 10.1016/j.expthermflusci.2017.11.023.
  • L. W. Fan, J. Q. Li, D. Y. Li, L. Zhang, and Z. T. Yu, “Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic,” Int. J. Heat Mass Transf., vol. 76, pp. 81–89, Sep. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.025.
  • L. W. Fan, J. Q. Li, L. Zhang, Z. T. Yu, and K. F. Cen, “Pool boiling heat transfer on a nanoscale roughness-enhanced superhydrophilic surface for accelerated quenching in water,” Appl. Therm. Eng., vol. 109, pp. 630–639, Oct. 2016. DOI: 10.1016/j.applthermaleng.2016.08.131.
  • J. Xiong, Z. Wang, P. Xiong, T. Lu, and Y. Yang, “Experimental investigation on transient boiling heat transfer during quenching of fuel cladding surfaces,” Int. J. Heat Mass Transf., vol. 148, pp. 119131, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119131.
  • R. Nakath, C. Schuster and A. Hurtado, “Bubble size distribution in flow boiling of aqueous boric acid under high pressure,” Nucl. Eng. Des., vol. 262, pp. 562–570, Sep. 2013. DOI: 10.1016/j.nucengdes.2013.06.006.
  • J. Lee, Y. H. Jeong, and S. H. Chang, “CHF enhancement in flow boiling system with TSP and boric acid solutions under atmospheric pressure,” Nucl. Eng. Des., vol. 240, no. 10, pp. 3594–3600, Oct. 2010. DOI: 10.1016/j.nucengdes.2010.05.027.
  • F. J. Arias, “Boron dilution effect on boiling heat transfer with special reference to nuclear reactors technology,” Ann. Nucl. Energy, vol. 36, no. 9, pp. 1382–1385, Sep. 2009. DOI: 10.1016/j.anucene.2009.06.018.
  • A. V. Morozov, et al., “Experimental determination of the thermophysical properties of boric acid for VVER emergency regimes,” Atom. Energy, vol. 125, no. 3, pp. 178–184, Jan. 2019. DOI: 10.1007/s10512-018-00463-4.
  • A. A. Avramenko, I. V. Shevchuk, A. A. Moskalenko, P. N. Lohvynenko, and Y. Y. Kovetska, “Instability of a vapor layer on a vertical surface at presence of nanoparticles,” Appl. Therm. Eng, vol. 139, pp. 87–98, Jul. 2018. DOI: 10.1016/j.applthermaleng.2018.04.113.
  • K. Umminger, B. Schoen, and S. P. Schollenberger, “Conclusions on boron precipitation following a large break loss of coolant accident,” Int. Top. Meet. Nucl. React. Therm. Hydraul. 2015, NURETH 2015, vol. 4, pp. 2725–2734, 2015.
  • H. Yeom, K. Sridharan, and M. L. Corradini, “Bubble dynamics in pool boiling on nanoparticle-coated surfaces,” Heat Transf. Eng., vol. 36, no. 12, pp. 1013–1027, 2015. DOI: 10.1080/01457632.2015.979116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.