327
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Flow Boiling Performance Evaluation of Recharging Microchannel

ORCID Icon, ORCID Icon & ORCID Icon

References

  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Dev. Lett., vol. 2, no. 5, pp. 126–129, May 1981. DOI: 10.1109/EDL.1981.25367.
  • S. G. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels. Waltham, MA: Elsevier, 2005.
  • J. R. Thome, “State-of-the-art overview of boiling and two-phase flows in microchannels,” Heat Transf. Eng., vol. 27, no. 9, pp. 4–19, 2006. DOI: 10.1080/01457630600845481.
  • S. G. Kandlikar, “History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review,” ASME J. Heat Transf., vol. 134, no. 3, pp. 34001, Mar. 2012. DOI: 10.1115/1.4005126.
  • I. Mudawar, “Recent advances in high-flux, two-phase thermal management," J. Therm. Sci. Eng. Appl., vol. 5, no. 2, pp. 21012, Jun. 2013. DOI: 10.1115/1.4023599.
  • T. G. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: Fundamentals and applications,” Appl. Therm. Eng., vol. 115, pp. 1372–1397, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.08.063.
  • B. P. Benam et al., “Review on high heat flux flow boiling of refrigerants and water for electronics cooling,” Int. J. Heat Mass Transf., vol. 180, pp. 121787, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121787.
  • J. Li and G. P. Peterson, “Boiling nucleation and two-phase flow patterns in forced liquid flow in microchannels,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4797–4810, Nov. 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.029.
  • J. Lee and I. Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics,” Int. J. Heat Mass Transf., vol. 48, no. 5, pp. 941–955, Feb. 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.09.019.
  • C. Huh and M. H. Kim, “Pressure drop, boiling heat transfer and flow patterns during flow boiling in a single microchannel,” Heat Transf. Eng., vol. 28, no. 8–9, pp. 730–737, 2007. DOI: 10.1080/01457630701328213.
  • Y. Gan, J. Xu, and Y. Yan, “An experimental study of two-phase pressure drop of acetone in triangular silicon micro-channels,” Appl. Therm. Eng., vol. 80, pp. 76–86, Apr. 2015. DOI: 10.1016/j.applthermaleng.2015.01.038.
  • X. Fu, P. Zhang, C. Huang, and R. Wang, “Visual study of flow pattern evolution of flow boiling in a microtube,” Heat Transf. Eng., vol. 32, no. 11–12, pp. 1009–1018, 2011. DOI: 10.1080/01457632.2011.556477.
  • P. Thiangtham, P. K. Mondal, and S. Wongwises, “Flow boiling pressure drop characteristics in a multi-microchannel heat sink,” Phys. Fluids, vol. 33, no. 1, pp. 12004, 2021. DOI: 10.1063/5.0036615.
  • S. G. Kandlikar, “Fundamental issues related to flow boiling in minichannels and microchannels,” Exp. Therm. Fluid Sci., vol. 26, no. 2–4, pp. 389–407, Jun. 2002. DOI: 10.1016/S0894-1777(02)00150-4.
  • L. Cheng and G. Xia, “Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels,” Int. J. Heat Mass Transf., vol. 108, pp. 97–127, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.003.
  • V. V. Kuznetsov, “Fundamental issues related to flow boiling and two-phase flow patterns in microchannels–Experimental challenges and opportunities,” Heat Transf. Eng., vol. 40, no. 9–10, pp. 711–724, 2019. DOI: 10.1080/01457632.2018.1442291.
  • Z. Wu and B. Sunden, “On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels,” Renew. Sustain. Energy Rev., vol. 40, pp. 11–27, Dec. 2014. DOI: 10.1016/j.rser.2014.07.171.
  • Y. K. Prajapati and P. Bhandari, “Flow boiling instabilities in microchannels and their promising solutions–A review,” Exp. Therm. Fluid Sci., vol. 88, pp. 576–593, Nov. 2017. DOI: 10.1016/j.expthermflusci.2017.07.014.
  • G. Liang and I. Mudawar, “Review of channel flow boiling enhancement by surface modification, and instability suppression schemes,” Int. J. Heat Mass Transf., vol. 146, pp. 118864, Jan. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118864.
  • K. Balasubramanian et al., “Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels–A comparative study,” Int. J. Therm. Sci., vol. 50, no. 12, pp. 2413–2421, Dec. 2011. DOI: 10.1016/j.ijthermalsci.2011.07.007.
  • A. Kalani and S. G. Kandlikar, “Evaluation of pressure drop performance during enhanced flow boiling in open microchannels with tapered manifolds,” ASME J. Heat Transf., vol. 136, no. 5, pp. 51502, May 2014. DOI: 10.1115/1.4026306.
  • G. Xia, Y. Cheng, L. Cheng, and Y. Li, “Heat transfer characteristics and flow visualization during flow boiling of acetone in semi-open multi-microchannels,” Heat Transf. Eng., vol. 40, no. 16, pp. 1349–1362, 2019. DOI: 10.1080/01457632.2018.1470296.
  • D. Deng et al., “Flow boiling performance of Ω-shaped re-entrant copper microchannels with different channel sizes,” Exp. Therm. Fluid Sci., vol. 69, pp. 8–18, Dec. 2015. DOI: 10.1016/j.expthermflusci.2015.07.016.
  • D. Deng et al., “Parametric study on flow boiling characteristics in Ω-shaped re-entrant porous microchannels with structured surface,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 5, no. 8, pp. 1108–1121, Aug. 2015. DOI: 10.1109/TCPMT.2015.2454955.
  • S. Zhang, Y. Tang, W. Yuan, J. Zeng, and Y. Xie, “A comparative study of flow boiling performance in the interconnected microchannel net and rectangular microchannels,” Int. J. Heat Mass Transf., vol. 98, pp. 814–823, Jul. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.066.
  • Y. Tang et al., “Effects of structural parameter on flow boiling performance of interconnected microchannel net,” Appl. Therm. Eng., vol. 112, pp. 164–173, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.10.050.
  • W. Li et al., “Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (I): Characterizations of flow boiling heat transfer,” Int. J. Heat Mass Transf., vol. 116, pp. 208–217, Jan. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.009.
  • W. Li et al., “Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (II): Enhanced CHF and reduced pressure drop,” Int. J. Heat Mass Transf., vol. 115, pp. 264–272, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.032.
  • W. Li et al., “Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities,” Int. J. Heat Mass Transf., vol. 123, pp. 354–366, Aug. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.108.
  • L. Gao and S. H. Bhavnani, “Experimental study of augmented flow boiling in a dielectric fluid due to backward and forward facing stepped microchannels,” Int. J. Heat Mass Transf., vol. 124, pp. 484–490, Sept. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.057.
  • D. Deng, W. Wan, Y. Tang, Z. Wan, and D. Liang, “Experimental investigations on flow boiling performance of re-entrant and rectangular microchannels–A comparative study,” Int. J. Heat Mass Transf., vol. 82, pp. 435–446, Mar. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.074.
  • Y. K. Prajapati, M. Pathak, and M. K. Khan, “A comparative study of flow boiling heat transfer in three different configurations of microchannels,” Int. J. Heat Mass Transf., vol. 85, pp. 711–722, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.016.
  • Y. K. Prajapati, M. Pathak, and M. K. Khan, “Bubble dynamics and flow boiling characteristics in three different microchannel configurations,” Int. J. Therm. Sci., vol. 112, pp. 371–382, Feb. 2017. DOI: 10.1016/j.ijthermalsci.2016.10.021.
  • D. Deng, Y. Xie, Q. Huang, and W. Wan, “On the flow boiling enhancement in interconnected re-entrant microchannels,” Int. J. Heat Mass Transf., vol. 108, pp. 453–467, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.030.
  • Y. Li, G. Xia, Y. Jia, Y. Cheng, and J. Wang, “Experimental investigation of flow boiling performance in microchannels with and without triangular cavities–A comparative study,” Int. J. Heat Mass Transf., vol. 108, pp. 1511–1526, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.011.
  • Z. Wan, Y. Wang, X. Wang, and Y. Tang, “Flow boiling characteristics in microchannels with half-corrugated bottom plates,” Int. J. Heat Mass Transf., vol. 116, pp. 557–568, Jan. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.029.
  • G. D. Xia et al., “Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall,” Int. Commun. Heat Mass Transf., vol. 101, pp. 89–102, Feb. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.01.006.
  • D. D. Ma et al., “Experimental investigation of flow boiling heat transfer performance in zigzag microchannel heat sink for electronic cooling devices,” Int. J. Therm. Sci., vol. 145, pp. 106003, Nov. 2019. DOI: 10.1016/j.ijthermalsci.2019.106003.
  • S. Raj, A. Shukla, M. Pathak, and M. K. Khan, “A novel stepped microchannel for performance enhancement in flow boiling,” Int. J. Heat Mass Transf., vol. 144, pp. 118611, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118611.
  • Y. F. Li, G. D. Xia, D. D. Ma, J. L. Yang, and W. Li, “Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins,” Int. J. Heat Mass Transf., vol. 148, pp. 119036, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119036.
  • C. Dang, L. Jia, Q. Peng, L. Yin, and Z. Qi, “Comparative study of flow boiling heat transfer and pressure drop of HFE-7000 in continuous and segmented microchannels,” Int. J. Heat Mass Transf., vol. 148, pp. 119038, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119038.
  • M. R. Özdemir, M. M. Mahmoud, and T. G. Karayiannis, “Flow boiling of water in a rectangular metallic microchannel,” Heat Transf. Eng., vol. 42, no. 6, pp. 492–516, 2021. DOI: 10.1080/01457632.2019.1707390.
  • Y. Yan and Y. Zu, “Numerical simulation of bubbles deformation, flow, and coalescence in a microchannel under pseudo-nucleation conditions,” Heat Transf. Eng., vol. 32, no. 13–14, pp. 1182–1190, 2011. DOI: 10.1080/01457632.2011.562731.
  • D. Lorenzini and Y. K. Joshi, “Computational fluid dynamics modeling of flow boiling in microchannels with nonuniform heat flux,” J. Heat Transf., vol. 140, no. 1, pp. 11501, Jan. 2018. DOI: 10.1115/1.4037343.
  • Y. W. Na and J. N. Chung, “Numerical simulation of forced convective boiling in a microchannel,” J. Therm. Sci. Eng. Appl., vol. 10, no. 4, pp. 41006, Aug. 2018. DOI: 10.1115/1.4038989.
  • N. Tiwari and M. K. Moharana, “Conjugate heat transfer analysis of liquid-vapor two phase flow in a microtube: A numerical investigation,” Int. J. Heat Mass Transf., vol. 142, pp. 118427, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.07.077.
  • G. Hedau, P. Dey, R. Raj, and S. K. Saha, “Experimental and numerical investigation of the effect of number of parallel microchannels on flow boiling heat transfer,” Int. J. Heat Mass Transf., vol. 158, pp. 119973, Sept. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119973.
  • U. K. Alugoju, S. K. Dubey, and A. Javed, “3D Transient heat transfer analysis and flow visualization study in diverging microchannel for instability mitigated two-phase flow: A numerical study,” Int. J. Heat Mass Transf., vol. 160, pp. 120212, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120212.
  • N. Tiwari and M. K. Moharana, “Conjugate effect on flow boiling instability in wavy microchannel,” Int. J. Heat Mass Transf., vol. 166, pp. 120791, Feb. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120791.
  • J. Broughton and Y. K. Joshi, “Flow boiling in geometrically modified microchannels,” Phys. Fluids, vol. 33, no. 10, pp. 103308, Oct. 2021. DOI: 10.1063/5.0062585.
  • J. Qiu, J. Zhou, Q. Zhao, H. Qin, and X. Chen, “Numerical investigation of flow boiling characteristics in cobweb-shaped microchannel heat sink,” Case Stud. Therm. Eng., vol. 28, pp. 101677, Dec. 2021. DOI: 10.1016/j.csite.2021.101677.
  • H. Yu et al., “Influence of transient heat flux on boiling flow pattern in a straight microchannel applied in concentrator photovoltaic systems,” Int. J. Heat Mass Transf., vol. 190, pp. 122792, Jul. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122792.
  • S. K. Samal and M. K. Moharana, “Thermo-hydraulic performance evaluation of a novel design recharging microchannel,” Int. J. Therm. Sci., vol. 135, pp. 459–470, Jan. 2019. DOI: 10.1016/j.ijthermalsci.2018.09.006.
  • S. K. Samal and M. K. Moharana, “Thermohydrodynamic performance evaluation of recharging, interrupted and simple microchannels: A comparative study,” ASME J. Heat Transf., vol. 142, no. 1, pp. 12503, Jan. 2020. DOI: 10.1115/1.4045066.
  • S. K. Samal and M. K. Moharana, “Second law analysis of recharging microchannel using entropy generation minimization method,” Int. J. Mech. Sci., vol. 193, pp. 106174, Mar. 2021. DOI: 10.1016/j.ijmecsci.2020.106174.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, Jan. 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • W. H. Lee, “A pressure iteration scheme for two-phase flow modeling,” in Multiphase Transport Fundamentals, Reactor Safety, Applications, Washington, DC, USA: Hemisphere Publishing, 1980, pp. 407–732.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jun. 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • J.-M. Koo, S. Im, L. Jiang, and K. E. Goodson, “Integrated microchannel cooling for three-dimensional electronic circuit architectures,” ASME J. Heat Transf., vol. 127, no. 1, pp. 49–58, Jan. 2005. DOI: 10.1115/1.1839582.
  • E. W. Lemmon, M. L. Huber, and M. O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Gaithersburg, MD, USA: Natl Std. Ref. Data Series (NIST NSRDS), 2013.
  • Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 6th ed. New York, NY, USA: McGraw-Hill Education, 2020.
  • C. Choi, J. S. Shin, D. I. Yu, and M. H. Kim, “Flow boiling behaviors in hydrophilic and hydrophobic microchannels,” Exp. Therm. Fluid Sci., vol. 35, no. 5, pp. 816–824, Jul. 2011. DOI: 10.1016/j.expthermflusci.2010.07.003.
  • H.-C. Cheng, T.-L. Chang, and P.-H. Chen, “Experimental investigation of inner bubble dynamics during water droplet evaporation from heated surfaces with different roughness and wettability levels,” Int. J. Heat Mass Transf., vol. 157, pp. 119980, Aug. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119980.
  • G. Hedau, R. Raj, and S. K. Saha, “Effect of outlet plenum design on flow boiling heat transfer in microchannel heat sinks,” Therm. Sci. Eng. Prog., vol. 23, pp. 100868, Jun. 2021. DOI: 10.1016/j.tsep.2021.100868.
  • G. Wang, P. Cheng, and A. E. Bergles, “Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels,” Int. J. Heat Mass Transf., vol. 51, no. 9–10, pp. 2267–2281, May 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.08.027.
  • M. Law, P.-S. Lee, and K. Balasubramanian, “Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels,” Int. J. Heat Mass Transf., vol. 76, pp. 419–431, Sept. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.