42
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Truncated Transient Slab Model for a Reheating Furnace

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Z. Ahmed, S. Lecompte, T. De Raad, and M. De Paepe, “Steady state model of a reheating furnace for determining slab boundary conditions,” Energy Procedia, vol. 158, pp. 5844–5849, 2019. DOI: 10.1016/j.egypro.2019.01.542.
  • S. H. Han, D. Chang, and C. Y. Kim, “A numerical analysis of slab heating characteristics in a walking beam type reheating furnace,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 3855–3861, Sep. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.002.
  • Y. Hu, C. Tan, J. Broughton, and P. A. Roach, “Development of a first-principles hybrid model for large-scale reheating,” Appl. Energy, vol. 173, pp. 555–566, Jul. 2016. DOI: 10.1016/j.apenergy.2016.04.011.
  • C.-K. Tan, J. Jenkins, J. Ward, J. Broughton, and A. Heeley, “Zone modelling of the thermal performances of a large-scale bloom,” Appl. Therm. Eng., vol. 50, no. 1, pp. 1111–1118, Jan. 2013. DOI: 10.1016/j.applthermaleng.2012.06.046.
  • Z. Y. Ahmed, I. T’Jollyn, S. Lecompte, T. Demeester, T. De Raad, and M. De Paepe, “Steady-state heat flux prediction to slabs in a walking beam furnace,” Heat Transf. Eng., vol. 44, no. 1, pp. 39–56, 2023. DOI: 10.1080/01457632.2022.2027100.
  • R. Prieler, B. Mayr, M. Demuth, B. Holleis, and C. Hochenauer, “Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD,” Int. J. Heat Mass Transf., vol. 92, pp. 675–688, Jan. 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.056.
  • R. Prieler, B. Mayr, M. Demuth, B. Holleis, and C. Hochenauer, “Numerical analysis of the transient heating of steel billets and the combustion process under air-fired and oxygen enriched conditions,” Appl. Therm. Eng., vol. 103, pp. 252–263, Jun. 2016. DOI: 10.1016/j.applthermaleng.2016.04.091.
  • C. Schluckner, C. Gaber, M. Demuth, S. Forstinger, R. Prieler, and C. Hochenauer, “CFD-model to predict the local and time-dependent scale formation of steels in air- and oxygen enriched combustion atmospheres,” Appl. Therm. Eng., vol. 143, pp. 822–835, Oct. 2018. DOI: 10.1016/j.applthermaleng.2018.08.010.
  • M. Landfahrer et al., “Numerical and experimental investigation of scale formation on steel tubes in a real-size reheating furnace,” Int. J. Heat Mass Transf., vol. 129, pp. 460–467, Feb. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.110.
  • B. Mayr, R. Prieler, M. Demuth, L. Moderer, and C. Hochenauer, “CFD analysis of a pusher type reheating furnace and the billet heating characteristic,” Appl. Therm. Eng., vol. 115, pp. 986–994, Mar. 2017. DOI: 10.1016/j.applthermaleng.2017.01.028.
  • J. H. Chang, J. Oh, and H. Lee, “Development of a roller hearth furnace simulation model and performance investigation,” Int. J. Heat Mass Transf., vol. 160, pp. 120222, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120222.
  • S. Chakraborty and P. Talukdar, “Efficient Modeling and Optimal Design of Coal Fired Pusher Type Reheating Furnace,” Heat Transf. Eng., vol. 42, no. 22, pp. 1949–1968, 2021. DOI: 10.1080/01457632.2020.1834218.
  • J. M. Casal, J. Porteiro, J. L. Míguez, and A. Vázquez, “New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state,” Appl. Therm. Eng., vol. 86, pp. 69–80, Jul. 2015. DOI: 10.1016/j.applthermaleng.2015.04.020.
  • M. Y. Gu, G. Chen, X. Liu, C. Wu, and H. Chu, “Numerical simulation of slab heating process in a regenerative walking beam reheating furnace,” Int. J. Heat Mass Transf., vol. 76, pp. 405–410, Sep. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.061.
  • M. Y. Kim, “A heat transfer model for the analysis of transient heating of the slab,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3740–3748, Sep. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.023.
  • J.-Y. Jang and J.-B. Huang, “Optimization of a slab heating pattern for minimum energy,” Appl. Therm. Eng., vol. 85, pp. 313–321, Jun. 2015. DOI: 10.1016/j.applthermaleng.2015.04.029.
  • A. Jaklic, T. Kolenko, and B. Zupancic, “The influence of the space between the billets on the productivity of a continuous walking-beam furnace,” Appl. Therm. Eng., vol. 25, no. 5–6, pp. 783–795, Apr. 2005. DOI: 10.1016/j.applthermaleng.2004.07.012.
  • V. K. Singh, P. Talukdara, and P. J. Coelho, “Performance evaluation of two heat transfer models of a walking beam type reheat furnace,” Heat Transf. Eng., vol. 36, no. 1, pp. 91–101, 2015. DOI: 10.1080/01457632.2014.906287.
  • Y. Liu, J. Wang, C. Min, G. Xie, and B. Sundén, “Performance of fuel-air combustion in a reheating furnace at different flowrate and inlet conditions,” Energy, vol. 206, pp. 118206, Sep. 2020. DOI: 10.1016/j.energy.2020.118206.
  • G. Tang et al., “Modeling of the slab heating process in a walking beam reheating,” Int. J. Heat Mass Transf., vol. 113, pp. 1142–1151, Oct. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.026.
  • G. Tang et al., “CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace,” Appl. Therm. Eng., vol. 132, pp. 779–789, Mar. 2018. DOI: 10.1016/j.applthermaleng.2018.01.017.
  • ANSYS Fluent Theory Guide. Canonsburg, PA: ANSYS, Inc., 2022.
  • ANSYS Fluent User’s Guide. Canonsburg, PA: ANSYS, Inc., 2022.
  • T. Ishii, C. Zhang, and Y. Hino, “Numerical Study of the Performance of a Regenerative Furnace,” Heat Transf. Eng., vol. 23, no. 4, pp. 23–33, 2002. DOI: 10.1080/01457630290090473.
  • I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp,” Ind. Eng. Chem. Res., vol. 53, no. 6, pp. 2498–2508, Jan. 2014. DOI: 10.1021/ie4033999.
  • T. F. Smith, Z. F. Shen, and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transf., vol. 104, no. 4, pp. 602–608, Nov. 1982. DOI: 10.1115/1.3245174.
  • C.-N. Lin, Y.-P. Luo, J.-Y. Jang, and C.-H. Wang, “Novel approach to estimate the optimum zone fuel mass flow rates for a walking beam type reheating furnace,” Heat Transf. Eng., vol. 39, no. 7–8, pp. 586–597, 2018. DOI: 10.1080/01457632.2017.1325656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.