209
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multi-Objective Optimization of Hybrid Heat Sinks with Phase Change Materials

, , &

References

  • C. S. Miers and A. Marconnet, “Experimental investigation of composite phase change material heat sinks for enhanced passive thermal management,” J. Heat Transfer, vol. 143, no. 1, pp. 013001, Jan. 2021. DOI: 10.1115/1.4048620.
  • S. K. Saha and P. Dutta, “Role of melt convection on optimization of pcm-based heat sink under cyclic heat load,” Heat Transf. Eng., vol. 34, no. 11-12, pp. 950–958, 2013. DOI: 10.1080/01457632.2012.753574.
  • R. D. C. Oliveski, F. Becker, L. A. O. Rocha, C. Biserni and G. E. S. Eberhardt, “Design of fin structures for phase change material (PCM) melting process in rectangular cavities,” J. Energy Storage, vol. 35, pp. 102337, Mar. 2021. DOI: 10.1016/j.est.2021.102337.
  • V. Palomba, et al., “Latent thermal storage for solar cooling applications: materials characterization and numerical optimization of finned storage configurations,” Heat Transfer Eng.g, vol. 40, no. 12, pp. 1033–1048, 2019. DOI: 10.1080/01457632.2018.1451236.
  • R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” Int. J. Heat Mass Transfer, vol. 55, no. 5-6, pp. 1642–1649, Feb. 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.11.020.
  • C. Zhao, et al., “Simulations of melting performance enhancement for a PCM embedded in metal periodic structures,” Int. J. Heat Mass Transfer, vol. 168, pp. 120853, Apr. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120853.
  • R. Baby and C. Balaji, “Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink,” Int. Commun. Heat Mass Transfer, vol. 46, pp. 27–30, Aug. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.018.
  • B. Buonomo, D. Ercole, O. Manca and S. Nardini, “Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam,” Heat Transfer Eng., vol. 41, no. 12, pp. 1075–1084, 2020. DOI: 10.1080/01457632.2019.1600875.
  • S. Mancin, A. Diani, L. Doretti, K. Hooman and L. Rossetto, “Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams,” Int. J. Therm. Sci., vol. 90, pp. 79–89, Apr. 2015. DOI: 10.1016/j.ijthermalsci.2014.11.023.
  • H. Xu, Y. Wang and X. Han, “Analytical considerations of thermal storage and interface evolution of a PCM with/without porous media,” HFF, vol. 30, no. 1, pp. 373–400, Jan. 2019. DOI: 10.1108/HFF-02-2019-0094.
  • M. R. Assari, H. Basirat Tabrizi, M. Shafiee and Y. Cheshmeh Khavar, “Experimental performance of desalination system using solar concentrator, nano-fluid, and preheater tube accompanying phase change material,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 45, no. 4, pp. 1033–1044, 2021. DOI: 10.1007/s40997-020-00383-4.
  • L. Colla, et al., “Nano-phase change materials for electronics cooling applications,” J. Heat Transfer, vol. 139, no. 5, pp. 052406, May 2017. DOI: 10.1115/1.4036017.
  • H. Faraji, M. Faraji and M. El Alami, “Numerical study of the transient melting of nano-enhanced phase change material,” Heat Transfer Eng., vol. 42, no. 2, pp. 120–139, 2021. DOI: 10.1080/01457632.2019.1692496.
  • M. Abdollahzadeh and M. Esmaeilpour, “Enhancement of phase change material (PCM) based latent heat storage, system with nano fluid and wavy surface,” Int. J. Heat Mass Transfer, vol. 80, pp. 376–385, Jan. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.007.
  • A. K. Gupta, G. Mishra and S. Singh, “Numerical study of MWCNT enhanced PCM melting through a heated undulated wall in the latent heat storage unit,” Therm. Sci. Eng. Prog., vol. 27, pp. 101172, Jan. 2022. DOI: 10.1016/j.tsep.2021.101172.
  • A. Ghanbarpour, et al., “Evaluation of heat sink performance using PCM and vapor chamber/heat pipe,” Renewable Energy, vol. 163, pp. 698–719, Jan. 2021. DOI: 10.1016/j.renene.2020.08.154.
  • G. K. Marri and C. Balaji, “Experimental and numerical investigations on a phase change material based heat sink with symbiotically joined heat pipe,” Heat Transfer Eng., vol. 42, no. 1, pp. 23–40, 2021. DOI: 10.1080/01457632.2019.1685241.
  • H. Behi, et al., “PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles,” Case Stud. Therm. Eng., vol. 25, pp. 100920, Jun. 2021. DOI: 10.1016/j.csite.2021.100920.
  • A. N. Desai, H. Shah and V. K. Singh, “Novel inverted fin configurations for enhancing the thermal performance of PCM based thermal control unit: a numerical study,” Appl. Therm. Eng., vol. 195, pp. 117155, Aug. 2021. DOI: 10.1016/j.applthermaleng.2021.117155.
  • X. Luo, et al., “Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins,” J. Energy Storage, vol. 45, pp. 103780, Jan. 2022. DOI: 10.1016/j.est.2021.103780.
  • M. R. Singh and A. Giri, “A comparison of the performance of constant and dual height pin fins in phase change material cooling technique,” J. Therm. Sci. Eng. Appl., vol. 13, no. 4, pp. 041027, Mar. 2021. DOI: 10.1115/1.4048665.
  • Z. Chen, D. Gao and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale,” Int. J. Heat Mass Transfer, vol. 72, pp. 646–655, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
  • S. Wang, et al., “Experimental study on the thermal performance of PCMs based heat sink using higher alcohol/graphite foam,” Appl. Therm. Eng., vol. 198, pp. 117452, Nov. 2021. DOI: 10.1016/j.applthermaleng.2021.117452.
  • C. Zhao, et al., “Phase change behavior study of PCM tanks partially filled with graphite foam,” Appl. Therm. Eng., vol. 196, pp. 117313, Sep. 2021. DOI: 10.1016/j.applthermaleng.2021.117313.
  • J. M. Mahdi, H. I. Mohammed, E. T. Hashim, P. Talebizadehsardari and E. C. Nsofor, “Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system,” Appl. Energy, vol. 257, pp. 113993, Jan. 2020. DOI: 10.1016/j.apenergy.2019.113993.
  • H. J. Xu and C. Y. Zhao, “Thermal performance of cascaded thermal storage with phase-change materials (PCMs). Part I: steady cases,” Int. J. Heat Mass Transfer, vol. 106, pp. 932–944, Mar. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.054.
  • J. M. Mahdi and E. C. Nsofor, “Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins,” Appl. Energy, vol. 211, pp. 975–986, Feb. 2018. DOI: 10.1016/j.apenergy.2017.11.082.
  • H. A. Refaey, M. H. Wahba, H. E. Abdelrahman, M. Moawad and N. S. Berbish, “Experimental Study on the Performance Enhancement of the Photovoltaic Cells by Using Various Nano-Enhanced PCMs,” J. Inst. Eng. India Ser. C, vol. 102, no. 2, pp. 553–562, Jan. 2021. DOI: 10.1007/s40032-020-00655-7.
  • Z. Khan and Z. A. Khan, “Performance evaluation of coupled thermal enhancement through novel wire‐wound fins design and graphene nano‐ platelets in shell‐and‐tube latent heat storage system,” Energies, vol. 14, no. 13, pp. 3743, Jun. 2021. DOI: 10.3390/en14133743.
  • M. H. S. Abandani and D. D. Ganji, “Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination,” J. Energy Storage, vol. 43, pp. 103154, Nov. 2021. DOI: 10.1016/j.est.2021.103154.
  • Q. Ren, F. Meng and P. Guo, “A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale,” Int. J. Heat Mass Transfer, vol. 121, pp. 1214–1228, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.046.
  • A. Nagose, A. Somani, A. Shrot and A. Narasimhan, “Genetic algorithm based optimization of PCM based heat sinks and effect of heat sink parameters on operational time,” J. Heat Transfer, vol. 130, no. 1, pp. 011401, Jan. 2008. DOI: 10.1115/1.2780182.
  • A. Pizzolato, A. Sharma, K. Maute, A. Sciacovelli and V. Verda, “Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization,” Appl. Energy, vol. 208, pp. 210–227, Dec. 2017. DOI: 10.1016/j.apenergy.2017.10.050.
  • P. P. Levin, A. Shitzer and G. Hetsroni, “Numerical optimization of a PCM-based heat sink with internal fins,” Int. J. Heat Mass Transfer, vol. 61, pp. 638–645, Jun. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.056.
  • J. Xie, H. M. Lee and J. Xiang, “Numerical study of thermally optimized metal structures in a Phase Change Material (PCM) enclosure,” Appl. Therm. Eng., vol. 148, pp. 825–837, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.11.111.
  • M. Augspurger, K. K. Choi and H. S. Udaykumar, “Optimizing fin design for a PCM-based thermal storage device using dynamic Kriging,” Int. J. Heat Mass Transfer, vol. 121, pp. 290–308, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.143.
  • A. Singh, S. Rangarajan, L. Choobineh and B. Sammakia, “Figure of merit-based optimization approach of phase change material-based composites for portable electronics using simplified model,” J. Electron Package, vol. 144, no. 2, pp. 021104, Jun. 2022. DOI: 10.1115/1.4052074.
  • M. S. Nedumaran and N. Gnanasekaran, “Comprehensive analysis of hybrid heat sinks with phase change materials for both charging and discharging cycles,” Heat Transfer Eng., vol. 44, no. 4, pp. 334–352, Apr. 2023. DOI: 10.1080/01457632.2022.2059216.
  • C. Ji, et al., “Non-uniform heat transfer suppression to enhance PCM melting by angled fins,” Appl. Therm. Eng., vol. 129, pp. 269–279, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.10.030.
  • C. Ji, et al., “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transfer, vol. 127, pp. 255–265, Dec. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.118.
  • ANSYS FLUENT., ANSYS Fluent 12.0 User’s Guide. Canonsburg, PA: Ansys Inc, 2009. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ANSYS+FLUENT+User+’+s+Guide#1.
  • V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transfer, vol. 122, no. 3, pp. 557–565, Aug. 2000. DOI: 10.1115/1.1287793.
  • V. V. Calmidi, “Transport phenomena in high porosity fibrous metal foams,” Ph.D. thesis, University of Colorado, Boulder, CO, 1998. https://www.semanticscholar.org/paper/Transport-phenomena-in-high-porosity-fibrous-metal-Calmidi/53d17b0c79c986425deb49b32bb0ab22fcdd155a#paper-header.
  • K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transfer, vol. 44, no. 4, pp. 827–836, Feb. 2001. DOI: 10.1016/S0017-9310(00)00123-X.
  • W. Lu, T. Zhang and M. Yang, “Analytical solution of forced convective heat transfer in parallel-plate channel partially filled with metallic foams,” Int. J. Heat Mass Transfer, vol. 100, pp. 718–727, Sep. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.047.
  • H. Zheng, C. Wang, Q. Liu, Z. Tian and X. Fan, “Thermal performance of copper foam/paraffin composite phase change material,” Energy Convers Manage, vol. 157, pp. 372–381, Feb. 2018. DOI: 10.1016/j.enconman.2017.12.023.
  • P. H. Jadhav, N. Gnanasekaran, D. A. Perumal and M. Mobedi, “Performance evaluation of partially filled high porosity metal foam configurations in a pipe,” Appl. Therm. Eng., vol. 194, pp. 117081, Jul. 2021. DOI: 10.1016/j.applthermaleng.2021.117081.
  • G. Trilok and N. Gnanasekaran, “Numerical study on maximizing heat transfer and minimizing flow resistance behavior of metal foams owing to their structural properties,” Int. J. Therm. Sci., vol. 159, pp. 106617, Jan. 2021. DOI: 10.1016/j.ijthermalsci.2020.106617.
  • Z.-Q. Zhu, Y.-K. Huang, N. Hu, Y. Zeng and L.-W. Fan, “Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio,” Appl. Therm. Eng., vol. 128, pp. 966–972, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.