157
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tangency portfolio weights under a skew-normal model in small and large dimensions

, ORCID Icon & ORCID Icon
Pages 1395-1406 | Received 14 Oct 2021, Accepted 04 Jul 2023, Published online: 06 Sep 2023

References

  • Alfelt, G., & Mazur, S. (2022). On the mean and variance of the estimated tangency portfolio weights for small samples. Modern Stochastics, 9(4), 453–482. https://doi.org/10.15559/22-VMSTA212
  • Alles, L. A., & Kling, J. L. (1994). Regularities in the variation of skewness in asset returns. Journal of Financial Research, 17(3), 427–438. https://doi.org/10.1111/j.1475-6803.1994.tb00203.x
  • Arellano-Valle, R. B., & Azzalini, A. (2006). On the unification of families of skew-normal distributions. Scandinavian Journal of Statistics, 33(3), 561–574. https://doi.org/10.1111/j.1467-9469.2006.00503.x
  • Bai, Z., Li, H., McAleer, M., & Wong, W. K. (2021). Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization. Econometrics and Statistics, (24), 133–150.
  • Bai, Z., Liu, H., & Wong, W. K. (2009). Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory. Mathematical Finance, 19(4), 639–667. https://doi.org/10.1111/j.1467-9965.2009.00383.x
  • Bauder, D., Bodnar, T., Mazur, S., & Okhrin, Y. (2018). Bayesian inference for the tangent portfolio. International Journal of Theoretical and Applied Finance, 21(08), 1850054. https://doi.org/10.1142/S0219024918500541
  • Bodnar, T., Dette, H., Parolya, N., & Thorsén, E. (2022). Sampling distributions of optimal portfolio weights and characteristics in low and large dimensions. Random Matrices, 11(01), 22500083. https://doi.org/10.1142/S2010326322500083
  • Bodnar, T., & Gupta, A. K. (2015). Robustness of the inference procedures for the global minimum variance portfolio weights in a skew-normal model. The European Journal of Finance, 21(13–14), 1176–1194. https://doi.org/10.1080/1351847X.2012.696073
  • Bodnar, T., Mazur, S., Muhinyuza, S., & Parolya, N. (2020). On the product of a singular Wishart matrix and a singular Gaussian vector in high dimension. Theory of Probability and Mathematical Statistics, 99(2), 39–52. https://doi.org/10.1090/tpms/1078
  • Bodnar, T., Mazur, S., & Okhrin, Y. (2013). On the exact and approximate distributions of the product of a Wishart matrix with a normal vector. Journal of Multivariate Analysis, 122, 70–81. https://doi.org/10.1016/j.jmva.2013.07.007
  • Bodnar, T., Mazur, S., & Okhrin, Y. (2016). Distribution of the product of singular Wishart matrix and normal vector. Theory of Probability and Mathematical Statistics, 91, 1–15. https://doi.org/10.1090/tpms/962
  • Bodnar, T., Mazur, S., & Parolya, N. (2019). Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions. Scandinavian Journal of Statistics, 46(2), 636–660. https://doi.org/10.1111/sjos.12383
  • Bodnar, T., Mazur, S., & Podgórski, K. (2016). Singular inverse Wishart distribution and its application to portfolio theory. Journal of Multivariate Analysis, 143, 314–326. https://doi.org/10.1016/j.jmva.2015.09.021
  • Bodnar, T., Mazur, S., & Podgórski, K. (2017). A test for the global minimum variance portfolio for small sample and singular covariance. AStA Advances in Statistical Analysis, 101(3), 253–265. https://doi.org/10.1007/s10182-016-0282-z
  • Bodnar, T., Mazur, S., Podgórski, K., & Tyrcha, J. (2019). Tangency portfolio weights for singular covariance matrix in small and large dimensions: Estimation and test theory. Journal of Statistical Planning and Inference, 201, 40–57. https://doi.org/10.1016/j.jspi.2018.11.003
  • Bodnar, T., & Okhrin, Y. (2011). On the product of inverse wishart and normal distributions with applications to discriminant analysis and portfolio theory. Scandinavian Journal of Statistics, 38(2), 311–331. https://doi.org/10.1111/j.1467-9469.2011.00729.x
  • Bodnar, T., Parolya, N., & Schmid, W. (2013). On the equivalence of quadratic optimization problems commonly used in portfolio theory. European Journal of Operational Research, 229(3), 637–644. https://doi.org/10.1016/j.ejor.2013.03.002
  • Briec, W., Kerstens, K., & Van de Woestyne, I. (2013). Portfolio selection with skewness: A comparison of methods and a generalized one fund result. European Journal of Operational Research, 230(2), 412–421. https://doi.org/10.1016/j.ejor.2013.04.021
  • Britten-Jones, M. (1999). The sampling error in estimates of mean-variance efficient portfolio weights. The Journal of Finance, 54(2), 655–671. https://doi.org/10.1111/0022-1082.00120
  • Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse and stable markowitz portfolios. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12267–12272. https://doi.org/10.1073/pnas.0904287106
  • Chernousova, E., & Golubev, Y. (2014). Spectral cut-off regularizations for ill-posed linear models. Mathematical Methods of Statistics, 23(2), 116–131. https://doi.org/10.3103/S1066530714020033
  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2001) 223–236.
  • Domínguez-Molina, J. A., González-Farías, G., Ramos-Quiroga, R., & Gupta, A. K. (2007). A matrix variate closed skew-normal distribution with applications to stochastic frontier analysis. Communications in Statistics, 36(9), 1691–1703. https://doi.org/10.1080/03610920601126126
  • Gulliksson, M., & Mazur, S. (2020). An iterative approach to ill-conditioned optimal portfolio selection. Computational Economics, 56(4), 773–794. https://doi.org/10.1007/s10614-019-09943-6
  • Gulliksson, M., Oleynik, A., & Mazur, S. (2023). Portfolio selection with a rank-deficient covariance matrix. Computational Economics, 104(4), 4. https://doi.org/10.1007/s10614-023-10404-4
  • Harvey, C. R., Liechty, J. C., Liechty, M. W., & Müller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10(5), 469–485. https://doi.org/10.1080/14697681003756877
  • Javed, F., Mazur, S., & Ngailo, E. (2021). Higher order moments of the estimated tangency portfolio weights. Journal of Applied Statistics, 48(3), 517–535. https://doi.org/10.1080/02664763.2020.1736523
  • Jobson, J. D., & Korkie, B. (1980). Estimation for markowitz efficient portfolios. Journal of the American Statistical Association, 75(371), 544–554. https://doi.org/10.1080/01621459.1980.10477507
  • Jorion, P. (1986). Bayes-stein estimation for portfolio analysis. The Journal of Financial and Quantitative Analysis, 21(3), 279–292. https://doi.org/10.2307/2331042
  • Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42(3), 621–656. https://doi.org/10.1017/S0022109000004129
  • Karlsson, S., Mazur, S., & Muhinyuza, S. (2021). Statistical inference for the tangency portfolio in high dimension. Statistics, 55(3), 532–560. https://doi.org/10.1080/02331888.2021.1951730
  • Klein, R. W., & Bawa, V. S. (1976). The effect of estimation risk on optimal portfolio choice. Journal of Financial Economics, 3(3), 215–231. https://doi.org/10.1016/0304-405X(76)90004-0
  • Kotsiuba, I., & Mazur, S. (2017). On the asymptotic and approximate distributions of the product of an inverse wishart matrix and a gaussian vector. Theory of Probability and Mathematical Statistics, 93, 103–112. https://doi.org/10.1090/tpms/1004
  • Kraus, A., & Litzenberger, R. H. (1976). Skewness preference and the valuation of risk assets. The Journal of Finance, 31(4), 1085–1100. https://doi.org/10.2307/2326275
  • Kress, R. (1999). Linear integral equations. Springer.
  • Ledoit, O., & Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. The Review of Financial Studies, 30(12), 4349–4388. https://doi.org/10.1093/rfs/hhx052
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77. https://doi.org/10.2307/2975974
  • Muhinyuza, S. (2021). A test on mean-variance efficiency of the tangency portfolio in high-dimensional setting. Theory of Probability and Mathematical Statistics, 103, 103–119. https://doi.org/10.1090/tpms/1136
  • Muhinyuza, S., Bodnar, T., & Lindholm, M. (2020). A test on the location of the tangency portfolio on the set of feasible portfolios. Applied Mathematics and Computation, 386, 125519. https://doi.org/10.1016/j.amc.2020.125519
  • Okhrin, Y., & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics, 134(1), 235–256. https://doi.org/10.1016/j.jeconom.2005.06.022
  • Palczewski, A., & Palczewski, J. (2014). Theoretical and empirical estimates of mean–variance portfolio sensitivity. European Journal of Operational Research, 234(2), 402–410. https://doi.org/10.1016/j.ejor.2013.04.018
  • Peiro, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23(6), 847–862. https://doi.org/10.1016/S0378-4266(98)00119-8
  • Tikhonov, A., & Arsenin, V. (1977). Solutions of ill-posed problems. Winston.
  • Winkler, R. L. (1973). Bayesian models for forecasting future security prices. The Journal of Financial and Quantitative Analysis, 8(3), 387–405. https://doi.org/10.2307/2329642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.