65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Random Sampling of Mellin Band-Limited Signals

, &
Pages 136-150 | Received 12 Apr 2023, Accepted 05 Feb 2024, Published online: 21 Feb 2024

References

  • Bertero, M., Pike, E. R. (1991). Exponential-sampling method for Laplace and other dilationally invariant transforms. II. Examples in photon correlation spectroscopy and Fraunhofer diffraction. Inverse Probl. 7:21–41. DOI: 10.1088/0266-5611/7/1/004.
  • Gori, F. (1993). Sampling in optics. In: Marks II, R. J., ed. Advanced Topics in Shannon Sampling and Interpolation Theory. Springer Texts in Electrical Engineering. New York: Springer, pp. 37–83.
  • Casasent, D. (1978). Optical Data Processing. Berlin: Springer, pp. 241–282.
  • Ostrowsky, N., Sornette, D., Parke, P., Pike, E. R. (1981). Exponential sampling method for light scattering polydispersity analysis. Opt. Acta. 28:1059–1070. DOI: 10.1080/713820704.
  • Butzer, P. L., Jansche, S. (1998). The exponential sampling theorem of signal analysis, Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996). Atti. Sem. Mat. Fis. Univ. Modena 46:99–122.
  • Bardaro, C., Faina, L., Mantellini, I. (2017.) A generalization of the exponential sampling series and its approximation properties. Math. Slovaca. 67:1481–1496. DOI: 10.1515/ms-2017-0064.
  • Aral, A., Acar, T., Kursun, S. (2022). Generalized Kantorovich forms of exponential sampling series. Anal. Math. Phys. 12:50. DOI: 10.1007/s13324-022-00667-9.
  • Angamuthu, S. K., Bajpeyi, S. (2020). Direct and inverse results for Kantorovich type exponential sampling series. Result Math. 75(3):119. DOI: 10.1007/s00025-020-01241-0.
  • Bajpeyi, S., Kumar, A. S. (2021). On approximation by Kantorovich exponential sampling operators. Numer. Funct. Anal. Optim. 42(9):1096–1113. DOI: 10.1080/01630563.2021.1940200.
  • Bajpeyi, S., Kumar, A. S., Mantellini, I. (2022). Approximation by Durrmeyer type exponential sampling operators. Numer. Funct. Anal. Optim. 43(1):16–34. DOI: 10.1080/01630563.2021.1980798.
  • Bardaro, C., Mantellini, I., Schmeisser, G. (2019). Exponential sampling series: Convergence in Mellin-Lebesgue spaces. Result Math. 74:119. DOI: 10.1007/s00025-019-1044-5.
  • Butzer, P. L., Jansche, S. (1997). A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3:325–376. DOI: 10.1007/BF02649101.
  • Mamedov, R. G. (1991). The Mellin transform and approximation theory (in Russian). “Elm”. Baku, 273 pp.
  • Butzer, P. L., Stens, R. L. (1999). A self-contained approach to Mellin transform analysis for square integrable functions; applications. Integral Transform. Spec. Funct. 8:175–198. DOI: 10.1080/10652469908819226.
  • Bardaro, C., Butzer, P. L., Mantellini, I. (2014). The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting. Sampl. Theory Signal Process. Data Anal. 13:35–66. DOI: 10.1007/BF03549572.
  • Bardaro, C., Butzer, P. L., Mantellini, I. (2016). The Mellin-Parseval formula and its interconnections with the exponential sampling theorem of optical physics. Integral Transforms Spec. Funct. 27:17–29. DOI: 10.1080/10652469.2015.1087401.
  • Butzer, P. L., Jansche, S. (1998). The finite Mellin transform, Mellin-Fourier series, and the Mellin-Poisson summation formula. In: Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, Vol. I (Acquafredda di Maratea, 1996). Rend. Circ. Mat. Palermo (2) Suppl. No. 52, Vol. I:55–81.
  • Bardaro, C., Butzer, P. L., Mantellini, I. (2015). The foundations of fractional calculus in the Mellin transform setting with applications. J. Fourier Anal. Appl. 21:961–1017. DOI: 10.1007/s00041-015-9392-3.
  • Butzer, P. L., Kilbas, A. A., Trujillo, J. J. (2002). Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269(1):1–27. DOI: 10.1016/S0022-247X(02)00001-X.
  • Chan, S. H., Zickler, T., Lu, Y. M. (2014). Monte Carlo non-local means: random sampling for large-scale image filtering. IEEE Trans. Image Process. 23(8):3711–3725. DOI: 10.1109/TIP.2014.2327813.
  • Candés, E. J., Romberg, J., Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2):489–509. DOI: 10.1109/TIT.2005.862083.
  • Eldar, Y. (2009). Compressed sensing of analog signals in shift-invariant spaces. IEEE Trans. Signal Process. 8(57):2986–2997.
  • Cucker, F., Smale, S. (2002). On the mathematical foundations of learning. Bull. Am. Math. Soc. 39(1):1–49. DOI: 10.1090/S0273-0979-01-00923-5.
  • Cucker, F., Zhou, D. X. (2007). Learning Theory: an Approximation Theory Viewpoint, Vol. 24. Cambridge: Cambridge University Press.
  • Bass, R. F., Gröchenig, K. (2010). Random sampling of band-limited functions. Israel J. Math. 177:1–28. DOI: 10.1007/s11856-010-0036-7.
  • Bass, R. F., Gröchenig, K. (2004/05). Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36(3):773–795. DOI: 10.1137/S0036141003432316.
  • Li, W., Xian, J. (2022). Weighted random sampling and reconstruction in general multivariate trigonometric polynomial spaces. Anal. Appl. (Singap.) 20(5):1069–1088. DOI: 10.1142/S0219530521500330.
  • Bass, R. F., Gröchenig, K. (2013). Relevant sampling of band-limited functions. Ill. J. Math. 57(1):43–58.
  • Arati, S., Devaraj, P., Garg, A. K. (2022). Random average sampling and reconstruction in shift-invariant subspaces of mixed Lebesgue spaces. Result Math. 77:223. DOI: 10.1007/s00025-022-01738-w.
  • Führ, H., Xian, J. (2019). Relevant sampling in finitely generated shift-invariant spaces. J. Approx. Theory 240:1–15. DOI: 10.1016/j.jat.2018.09.009.
  • Yang, J. (2019). Random sampling and reconstruction in multiply generated shift-invariant spaces. Anal. Appl. 17(2):323–347. DOI: 10.1142/S0219530518500185.
  • Nashed, M. Z., Sun, Q. (2010). Sampling and reconstruction of signals in a reproducing kernel subspace of Lp(Rd). J. Funct. Anal. 258(7):2422–2452. DOI: 10.1016/j.jfa.2009.12.012.
  • Li, Y., Sun, Q., Xian, J. (2021). Random sampling and reconstruction of concentrated signals in a reproducing kernel space. Appl. Comput. Harmon. Anal. 54:273–302. DOI: 10.1016/j.acha.2021.03.006.
  • Patel, D., Sivananthan, S. (2020). Random sampling in reproducing kernel subspaces of Lp(Rn). J. Math. Anal. Appl. 491(1):124270. DOI: 10.1016/j.jmaa.2020.124270.
  • Patel, D., Sivananthan, S. (2023). Random sampling of signals concentrated on compact set in localized reproducing kernel subspace of Lp(Rn). Adv. Comput. Math. 49:76. DOI: 10.1007/s10444-023-10075-7.
  • Patel, D., Sivananthan, S. (2023). Spherical random sampling of localized functions on Sn−1. Proc. Amer. Math. Soc. 151(10):4485–4499. DOI: 10.1090/proc/16393.
  • Bardaro, C., Butzer, P. L., Mantellini, I., Schmeisser, G. (2016). On the Paley-Wiener theorem in the Mellin transform setting. J. Approx. Theory. 207:60–75. DOI: 10.1016/j.jat.2016.02.010.
  • Tuan, V. K. (1998). New type Paley-Wiener theorems for the modified multidimensional Mellin transform. J. Fourier Anal. Appl. 4(3):317–328. DOI: 10.1007/BF02476030.
  • Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57(297):33–45. DOI: 10.1080/01621459.1962.10482149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.