3,130
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The immune system of chicken and its response to H9N2 avian influenza virus

, &
Pages 1-14 | Received 23 Dec 2022, Accepted 17 Jun 2023, Published online: 05 Jul 2023

References

  • Abdolmaleki M, Yeap SK, Tan SW, Satharasinghe DA, Bello MB, Jahromi MZ, Bejo MH, Omar AR, Ideris A., 2018. Effects of Newcastle Disease Virus Infection on Chicken Intestinal Intraepithelial Natural Killer Cells. Front Immunol. 9:1386. doi: 10.3389/fimmu.2018.01386.
  • Ahad A Rabbani, et al. 2013. Serosurveillance to H9 and H7 Avian Influenza Virus among Poultry Workers in Punjab Province, Pakistan. Pakistan Veterinary Journal. 33(1):107–112.
  • Akauliya M, Gautam A, Maharjan S, Park BK, Kim J, Kwon HJ. 2020. CD83 expression regulates antibody production in response to influenza A virus infection. Virol J. 17(1):194. doi: 10.1186/s12985-020-01465-0.
  • Alexander DJ. 2007. An overview of the epidemiology of avian influenza. Vaccine. 25(30):5637–5644. doi: 10.1016/j.vaccine.2006.10.051.
  • Alizadeh E, Hosseini SM, Kheiri MT, Mazaheri V, Tabatabaeian M. 2009. Avian Influenza (H9N2) among poultry workers in Iran. Iranian Journal of Microbiology. 1(3):3–6.
  • Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. 2019. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol. 48(4):288–310. doi: 10.1080/03079457.2019.1607966.
  • Arakawa H, Furusawa S, Ekino S, Yamagishi H. 1996. Immunoglobulin gene hyperconversion ongoing in chicken splenic germinal centers. Embo J. 15(10):2540–2546.
  • Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. 2001. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol. 31(9):2680–2689. doi: 10.1002/1521-4141(200109)31:9<2680::AID-IMMU2680>3.0.CO;2-A.
  • Asahi-Ozaki Y, Yoshikawa T, Iwakura Y, Suzuki Y, Tamura S-I, Kurata T, Sata T. 2004. Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J Med Virol. 74(2):328–335., doi: 10.1002/jmv.20173.
  • Baba T, Kawata T, Masumoto K, Kajikawa T. 1990. Role of the harderian gland in immunoglobulin A production in chicken lacrimal fluid. Res Vet Sci. 49(1):20–24. doi: 10.1016/S0034-5288(18)31039-7.
  • Babior BM. 1992. The respiratory burst oxidase. Adv Enzymol Relat Areas Mol Biol. 65:49–95.
  • Babior BM. 2004. NADPH oxidase. Curr Opin Immunol. 16(1):42–47. doi: 10.1016/j.coi.2003.12.001.
  • Bang BG, Bang FB. 1968. Localized lymphoid tissues and plasma cells in paraocular and paranasal organ systems in chickens. The American Journal of Pathology. 53:735–751.
  • Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J. 2000. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med. 192(2):271–280. doi: 10.1084/jem.192.2.271.
  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. 2002. CD4 + CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 420(6915):502–507. doi: 10.1038/nature01152.
  • Belkaid Y, Tarbell K. 2009. Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol. 27:551–589. doi: 10.1146/annurev.immunol.021908.132723.
  • Betts RJ, Prabhu N, Ho AWS, Lew FC, Hutchinson PE, Rotzschke O, Macary PA, Kemeny DM. 2012. Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response. J Virol. 86(5):2817–2825., doi: 10.1128/JVI.05685-11.
  • Bi Y, Li J, Li S, Fu G, Jin T, Zhang C, Yang Y, Ma Z, Tian W, Li J, et al. 2020. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun. 11(1):5909. doi: 10.1038/s41467-020-19671-3.
  • Blair PJ, Putnam SD, Krueger WS, Chum C, Wierzba TF, Heil GL, Yasuda CY, Williams M, Kasper MR, Friary JA, et al. 2013. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia. J Infect Public Health. 6(2):69–79. doi: 10.1016/j.jiph.2012.11.005.
  • Brandtzaeg P. 2007. Induction of secretory immunity and memory at mucosal surfaces. Vaccine. 25(30):5467–5484. doi: 10.1016/j.vaccine.2006.12.001.
  • Broadbent AJ, Boonnak K, Subbarao K. 2015. Chapter 59—Respiratory virus vaccines. Mucosal Immunology. (Fourth Edition). 1:1129–1170.
  • Brownlie R, Allan B. 2011. Avian toll-like receptors. Cell Tissue Res. 343(1):121–130. doi: 10.1007/s00441-010-1026-0.
  • Burkhardt NB, Elleder D, Schusser B, Krchlíková V, Göbel TW, Härtle S, Kaspers B. 2022. The Discovery of Chicken Foxp3 Demands Redefinition of Avian Regulatory T Cells. J Immunol. 208(5):1128–1138., doi: 10.4049/jimmunol.2000301.
  • Burns RB. 1979. Histological and immunological studies on the fowl lacrimal gland following surgical excision of Harder’s gland. Res Vet Sci. 27(1):69–75. doi: 10.1016/S0034-5288(18)32861-3.
  • Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, Nelson DR. 2004. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology. 40(5):1062–1071., doi: 10.1002/hep.20454.
  • Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, et al. 2014. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet. 383(9918):714–721. doi: 10.1016/S0140-6736(14)60111-2.
  • Cheng Y, Sun Y, Wang H, Yan Y, Ding C, Sun J. 2015. Chicken STING Mediates Activation of the IFN Gene Independently of the RIG-I Gene. J Immunol. 195(8):3922–3936. doi: 10.4049/jimmunol.1500638.
  • Choi YS, Dieter JA, Rothaeusler K, Luo Z, Baumgarth N. 2012. B-1 cells in the bone marrow are a significant source of natural IgM. Eur J Immunol. 42(1):120–129. doi: 10.1002/eji.201141890.
  • Chothe SK, Nissly RH, Lim L, Bhushan G, Bird I, Radzio-Basu J, Jayarao BM, Kuchipudi SV., 2020. NLRC5 Serves as a Pro-viral Factor During Influenza Virus Infection in Chicken Macrophages. Front Cell Infect Microbiol. 10:230. doi: 10.3389/fcimb.2020.00230.
  • Chu J, Guo Y, Xu G, Zhang Q, Zuo Z, Li Q, Wang Y, He C. 2020. Chlamydia psittaci Triggers the Invasion of H9N2 Avian Influenza Virus by Impairing the Functions of Chicken Macrophages. Animals (Basel. 10(4):722., doi: 10.3390/ani10040722.
  • Cline TD, Beck D, Bianchini E. 2017. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol. 98(10):2401–2412. doi: 10.1099/jgv.0.000922.
  • Coman A, Maftei DN, Krueger WS, Heil GL, Friary JA, Chereches RM, Sirlincan E, Bria P, Dragnea C, Kasler I, et al. 2013. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers. J Infect Public Health. 6(6):438–447. doi: 10.1016/j.jiph.2013.05.003.
  • Cong J, Wei H. 2019. Natural Killer Cells in the Lungs. Front Immunol. 10:1416. doi: 10.3389/fimmu.2019.01416.
  • Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan WX, Brown EG, Liu JH. 2007. Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol. 88(Pt 7):2035–2041., doi: 10.1099/vir.0.82783-0.
  • Cooper MD, Peterson RDA, Good RA. 1965. Delineation of the Thymic and Bursal Lymphoid Systems in the Chicken. Nature. 205:143–146. doi: 10.1038/205143a0.
  • Curtsinger JM, Mescher MF. 2010. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 22(3):333–340. doi: 10.1016/j.coi.2010.02.013.
  • Dai, Manman, Li, Shibing, Sun, Hui, Zhao, Li, Liao, Jiayu, Xu, Chenggang, Liao, Ming, Keyi Shi, Deshui Yu, 2021. Comparative analysis of key immune protection factors in H9N2 avian influenza viruses infected and immunized specific pathogen-free chicken. Poult Sci, 1100:39–46 doi: 10.1016/j.psj.2020.09.080.
  • Dalpke A, Frank J, Peter M, Heeg K. 2006. Activation of toll-like receptor 9 by DNA from different bacterial species. Infect Immun. 74(2):940–946. doi: 10.1128/IAI.74.2.940-946.2006.
  • Davelaar FG, Kouwenhoven B. 1980. Effect of the removal of the Harderian gland in 1-day-old chicks on immunity following IB vaccination. Avian Pathol. 9(4):489–497. doi: 10.1080/03079458008418436.
  • Davison F. 2022. The importance of the avian immune system and its unique features. In Avian immunology. UK: Elsevier. pp. 1–9.
  • Degen WG, van Daal N, van Zuilekom HI, Burnside J, Schijns VE. 2004. Identification and molecular cloning of functional chicken IL-12. J Immunol. 172(7):4371–4380. doi: 10.4049/jimmunol.172.7.4371.
  • Depoil D, Weber M, Treanor B, Fleire SJ, Carrasco YR, Harwood NE, Batista FD. 2009. Early events of B cell activation by antigen. Sci Signal. 2(63):pt1., doi: 10.1126/scisignal.263pt1.
  • Dohms JE, Lee KP, Rosenberger JK. 1981. Plasma cell changes in the gland of Harder following infectious bursal disease virus infection of the chicken. Avian Dis. 25(3):683–695. doi: 10.2307/1589999.
  • Fagerland JA, Arp LH. 1993. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences. Regional Immunology. 5:28–36.
  • Fagerland JA, Arp LH. 1993. Structure and development of bronchus-associated lymphoid tissue in conventionally reared broiler chickens. Avian Dis. 37(1):10–18. doi: 10.2307/1591451.
  • Fioretti A, Calabria M, Piccirillo A, Menna L. 1999. The epidemiological situation of avian influenza in Italy during 1998. In Proc. Joint Fifth Annual Meetings of the National Newcastle Disease and Avian Influenza Laboratories of Countries of the European Union, Vienna. Citeseer. pp p. 20–22.
  • Gelb J, Jr., Nix WA, Gellman SD. 1998. Infectious bronchitis virus antibodies in tears and their relationship to immunity. Avian Dis. 42(2):364–374. doi: 10.2307/1592487.
  • Glick B. 1987. How it all began: the continuing story of the bursa of Fabricius.
  • Göbel TW, Chen CL, Shrimpf J, Grossi CE, Bernot A, Bucy RP, Auffray C, Cooper MD. 1994. Characterization of avian natural killer cells and their intracellular CD3 protein complex. Eur J Immunol. 24(7):1685–1691., doi: 10.1002/eji.1830240734.
  • Guan Y, Shortridge KF, Krauss S, Webster RG. 1999. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 96(16):9363–9367. doi: 10.1073/pnas.96.16.9363.
  • Guo J, Wang Y, Zhao C, Gao X, Zhang Y, Li J, Wang M, Zhang H, Liu W, Wang C, et al. 2021. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg Microbes Infect. 10(1):2098–2112. doi: 10.1080/22221751.2021.1999778.
  • Guo P, Thomas JD, Bruce MP, Hinton TM, Bean AG, Lowenthal JW. 2013. The chicken TH1 response: potential therapeutic applications of ChIFN-γ. Dev Comp Immunol. 41(3):389–396. doi: 10.1016/j.dci.2013.05.009.
  • Guo Y, Li J, Cheng X. 1999. Discovery of men infected by avian influenza A (H9N2) virus]. Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi =. Chinese Journal of Experimental and Clinical Virology. 13:105–108.
  • Gutcher I, Becher B. 2007. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 117(5):1119–1127. doi: 10.1172/JCI31720.
  • Hao X, Zhang F, Yang Y, Shang S. 2021. The Evaluation of Cellular Immunity to Avian Viral Diseases: methods, Applications, and Challenges. Front Microbiol. 12:794514. doi: 10.3389/fmicb.2021.794514.
  • Hayashi T, Watanabe C, Suzuki Y, Tanikawa T, Uchida Y, Saito T. 2014. Chicken MDA5 senses short double-stranded RNA with implications for antiviral response against avian influenza viruses in chicken. J Innate Immun. 6(1):58–71. doi: 10.1159/000351583.
  • He H, Genovese KJ, Kogut MH. 2011. Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines. Cytokine. 53(3):363–369. doi: 10.1016/j.cyto.2010.12.009.
  • He W-T, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, et al. 2022. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell. 185(7):1117–1129.e8. e1118 doi: 10.1016/j.cell.2022.02.014.
  • He Z, Ma Y, Wu D, Feng W, Xiao J. 2021. Protective effects of the NLRP3 inflammasome against infectious bursal disease virus replication in DF-1 cells. Arch Virol. 166(7):1943–1950. doi: 10.1007/s00705-021-05099-7.
  • Ho JW, Hershkovitz O, Peiris M, Zilka A, Bar-Ilan A, Nal B, Chu K, Kudelko M, Kam YW, Achdout H, et al. 2008. H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J Virol. 82(4):2028–2032. doi: 10.1128/JVI.02065-07.
  • Homme PJ, Easterday BC. 1970. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis. 14(1):66–74. doi: 10.2307/1588557.
  • Houssaint E, Belo M, Le Douarin NM. 1976. Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras. Dev Biol. 53(2):250–264. doi: 10.1016/0012-1606(76)90227-x.
  • Hua Z, Hou B. 2013. TLR signaling in B-cell development and activation. Cell Mol Immunol. 10(2):103–106. doi: 10.1038/cmi.2012.61.
  • Huang Z, Fang D, Lv P, Bian X, Ruan X, Yan Y, Zhou J. 2012. Differential cellular immune responses between chickens and ducks to H9N2 avian influenza virus infection. Vet Immunol Immunopathol. 150(3-4):169–180., doi: 10.1016/j.vetimm.2012.09.010.
  • Ito R, Ozaki YA, Yoshikawa T, Hasegawa H, Sato Y, Suzuki Y, Inoue R, Morishima T, Kondo N, Sata T, et al. 2003. Roles of anti-hemagglutinin IgA and IgG antibodies in different sites of the respiratory tract of vaccinated mice in preventing lethal influenza pneumonia. Vaccine. 21(19-20):2362–2371. doi: 10.1016/s0264-410x(03)00078-1.
  • Jansen CA, de Geus ED, van Haarlem DA, van de Haar PM, Löndt BZ, Graham SP, Göbel TW, van Eden W, Brookes SM, Vervelde L, et al. 2013. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity. Sci Rep. 3:2478. doi: 10.1038/srep02478.
  • Jeurissen SH, Janse EM. 1989. Distribution and function of non-lymphoid cells in liver and spleen of embryonic and adult chickens. Prog Clin Biol Res. 307:149–157.
  • Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H. 1994. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 369(6475):31–37., doi: 10.1038/369031a0.
  • Kalaiyarasu S, Kumar M, Senthil Kumar D, Bhatia S, Dash SK, Bhat S, Khetan RK, Nagarajan S. 2016. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiol Immunol. 60(10):687–693., doi: 10.1111/1348-0421.12443.
  • Kapczynski DR, Liljebjelke K, Kulkarni G, Hunt H, Jiang HJ, Petkov D. 2011. Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza. BMC Proc. 5 Suppl 4(Suppl 4):S13. doi: 10.1186/1753-6561-5-S4-S13.
  • Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, Daucher M, Planta M, McGlaughlin M, Jackson R, Ziegler SF, et al. 2004. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med. 200(3):331–343. doi: 10.1084/jem.20032069.
  • Ku KB, Park EH, Yum J, Kim HM, Kang YM, Kim JC, Kim JA, Kim HS, Seo SH., 2014. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets. Virology. 450-451:316–323. doi: 10.1016/j.virol.2013.12.022.
  • Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, Ettinger R. 2007. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol. 179(9):5886–5896., doi: 10.4049/jimmunol.179.9.5886.
  • Kwon J-S, Lee H-J, Lee D-H, Lee Y-J, Mo I-P, Nahm S-S, Kim M-J, Lee J-B, Park S-Y, Choi I-S, et al. 2008. Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res. 133(2):187–194. doi: 10.1016/j.virusres.2007.12.019.
  • Lam JH, Baumgarth N. 2019. The Multifaceted B Cell Response to Influenza Virus. J Immunol. 202(2):351–359. doi: 10.4049/jimmunol.1801208.
  • Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, Ma C, Lycett SJ, Leung CY-H, Chen X, et al. 2013. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. 502(7470):241–244. doi: 10.1038/nature12515.
  • Le Douarin NM, Houssaint E, Jotereau FV, Belo M. 1975. Origin of hemopoietic stem cells in embryonic bursa of Fabricius and bone marrow studied through interspecific chimeras. Proceedings of the National Academy of Sciences of the United States of America 72:p. 2701–2705. doi: 10.1073/pnas.72.7.2701.
  • Lee SB, Park YH, Chungu K, Woo SJ, Han ST, Choi HJ, Rengaraj D, Han JY., 2020. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front Immunol. 11:678. doi: 10.3389/fimmu.2020.00678.
  • Lee SH, Lillehoj HS, Jang SI, Lee KW, Baldwin C, Tompkins D, Wagner B, Del Cacho E, Lillehoj EP, Hong YH, et al. 2012. Development and characterization of mouse monoclonal antibodies reactive with chicken CD83. Vet Immunol Immunopathol. 145(1-2):527–533. doi: 10.1016/j.vetimm.2011.11.020.
  • Li S, Gowans EJ, Chougnet C, Plebanski M, Dittmer U. 2008. Natural regulatory T cells and persistent viral infection. J Virol. 82(1):21–30. doi: 10.1128/JVI.01768-07.
  • Li S, Yang J, Zhu Y, Ji X, Wang K, Jiang S, Luo J, Wang H, Zheng W, Chen N, et al. 2020. Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions. Vaccines (Basel. 8(3):369. doi: 10.3390/vaccines8030369.
  • Li X, Tian B, Jianfang Z, Yongkun C, Xiaodan L, Wenfei Z, Yan L, Jing T, Junfeng G, Tao C, et al. 2017. A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China. PLoS One. 12(6):e0178328. doi: 10.1371/journal.pone.0178328.
  • Lin J, Yin Y, Y, Qin T, Zhu LQ, Yu QH, Yang Q. 2014. Enhanced immune response of BMDCs pulsed with H9N2 AIV and CpG. Vaccine. 32(50):6783–6790. doi: 10.1016/j.vaccine.2014.10.013.
  • Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N. 2012. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol. 86(2):705–717. doi: 10.1128/JVI.00742-11.
  • Liu J, Zhang X, Cheng Y, Cao X. 2021. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 18(11):2461–2471. doi: 10.1038/s41423-021-00726-4.
  • Liu Q, Yang J, Huang X, Liu Y, Han K, Zhao D, Zhang L, Li Y., 2020. Global gene expression analysis data of chicken dendritic cells infected with H9N2 avian influenza virus. Data Brief. 30:105430. doi: 10.1016/j.dib.2020.105430.
  • Liu Q, Yang J, Huang X, Liu Y, Han K, Zhao D, Zhang L, Li Y., 2020. Transcriptomic profile of chicken bone marrow-derive dendritic cells in response to H9N2 avian influenza A virus. Vet Immunol Immunopathol. 220:109992. doi: 10.1016/j.vetimm.2019.109992.
  • Lowenthal JW, Connick TE, McWaters PG, York JJ. 1994. Development of T cell immune responsiveness in the chicken. Immunol Cell Biol. 72(2):115–122. doi: 10.1038/icb.1994.18.
  • Malik G, Zhou Y. 2020. Innate Immune Sensing of Influenza A Virus. Viruses. 12(7):755. doi: 10.3390/v12070755.
  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A, et al. 2001. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature. 409(6823):1055–1060. doi: 10.1038/35059110.
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. 1983. Cytotoxic T-cell immunity to influenza. N Engl J Med. 309(1):13–17. doi: 10.1056/NEJM198307073090103.
  • Meijerink N, van Haarlem DA, Velkers FC, Stegeman AJ, Rutten V, Jansen CA. 2021. Analysis of chicken intestinal natural killer cells, a major IEL subset during embryonic and early life. Dev Comp Immunol. 114:103857. doi: 10.1016/j.dci.2020.103857.
  • Mock DJ, Domurat F, Roberts NJ, Jr., Walsh EE, Licht MR, Keng P. 1987. Macrophages are required for influenza virus infection of human lymphocytes. J Clin Invest. 79(2):620–624. doi: 10.1172/JCI112856.
  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 41(1):14–20. doi: 10.1016/j.immuni.2014.06.008.
  • Nang NT, Lee JS, Song BM, Kang YM, Kim HS, Seo SH. 2011. Induction of inflammatory cytokines and Toll-like receptors in chickens infected with avian H9N2 influenza virus. Vet Res. 42(1):64. doi: 10.1186/1297-9716-42-64.
  • Niu Q, Cheng Y, Wang H, Yan Y, Sun J. 2019. Chicken DDX3X Activates IFN-β via the chSTING-chIRF7-IFN-β Signaling Axis. Front Immunol. 10:822. doi: 10.3389/fimmu.2019.00822.
  • Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. 2015. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 15(3):160–171. doi: 10.1038/nri3795.
  • Okoye J, Eze D, Krueger WS, Heil GL, Friary JA, Gray GC. 2013. Serologic evidence of avian influenza virus infections among Nigerian agricultural workers. J Med Virol. 85(4):670–676. doi: 10.1002/jmv.23520.
  • Palmquist JM, Khatri M, Cha RM, Goddeeris BM, Walcheck B, Sharma JM. 2006. In vivo activation of chicken macrophages by infectious bursal disease virus. Viral Immunol. 19(2):305–315. doi: 10.1089/vim.2006.19.305.
  • Paoliello-Paschoalato AB, Oliveira SH, Cunha FQ. 2005. Interleukin 4 induces the expression of inducible nitric oxide synthase in eosinophils. Cytokine. 30(3):116–124. doi: 10.1016/j.cyto.2005.01.001.
  • Parker DC. 1993. T cell-dependent B cell activation. Annu Rev Immunol. 11:331–360. doi: 10.1146/annurev.iy.11.040193.001555.
  • Pawar SD, Tandale BV, Raut CG, Parkhi SS, Barde TD, Gurav YK, Kode SS, Mishra AC. 2012. Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010. PLoS One. 7(5):e36374., doi: 10.1371/journal.pone.0036374.
  • Qiang F, Youxiang D. 2011. The effects of H9N2 influenza A on the immune system of broiler chickens in the Shandong Province. Transbound Emerg Dis. 58(2):145–151. doi: 10.1111/j.1865-1682.2010.01192.x.
  • Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, Zhang J, Zhang R, Meng X, et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun. 4:2071. doi: 10.1038/ncomms3071.
  • Quan C, Wang Q, Zhang J, Zhao M, Dai Q, Huang T, Zhang Z, Mao S, Nie Y, Liu J, et al. 2019. Avian Influenza A Viruses among Occupationally Exposed Populations, China, 2014-2016. Emerg Infect Dis. 25(12):2215–2225. doi: 10.3201/eid2512.190261.
  • Qureshi MA. 2003. Avian macrophage and immune response: an overview. Poult Sci. 82(5):691–698. doi: 10.1093/ps/82.5.691.
  • RahimiRad S, Alizadeh A, Alizadeh E, Hosseini SM. 2016. The avian influenza H9N2 at avian-human interface: a possible risk for the future pandemics. J Res Med Sci. 21:51. doi: 10.4103/1735-1995.187253.
  • Ramamurthy M, Sankar S, Abraham AM, Nandagopal B, Sridharan G. 2019. B cell epitopes in the intrinsically disordered regions of neuraminidase and hemagglutinin proteins of H5N1 and H9N2 avian influenza viruses for peptide-based vaccine development. J Cell Biochem. 120(10):17534–17544. doi: 10.1002/jcb.29017.
  • Ratcliffe MJ, Härtle S. 2022. B cells, the bursa of Fabricius, and the generation of antibody repertoires. In Avian immunology. Canada: Elsevier. pp. 71–99.
  • Reese S, Dalamani G, Kaspers B. 2006. The avian lung-associated immune system: a review. Vet Res. 37(3):311–324. doi: 10.1051/vetres:2006003.
  • Rogers SL, Viertlboeck BC, Göbel TW, Kaufman J. 2008. Avian NK activities, cells and receptors. Semin Immunol. 20(6):353–360. doi: 10.1016/j.smim.2008.09.005.
  • Ross KF, Herzberg MC. 2016. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection. Microbes Infect. 18(6):387–398. doi: 10.1016/j.micinf.2016.03.008.
  • Rouse BT, Sarangi PP, Suvas S. 2006. Regulatory T cells in virus infections. Immunol Rev. 212:272–286. doi: 10.1111/j.0105-2896.2006.00412.x.
  • Rudensky AY, Campbell DJ. 2006. In vivo sites and cellular mechanisms of T reg cell-mediated suppression. J Exp Med. 203(3):489–492. doi: 10.1084/jem.20060214.
  • Rumińska E, Koncicki A, Stenzel T. 2008. Structure and function of the avian immune system in birds. Medycyna Weterynaryjna. 64:265–268.
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 155(3):1151–1164.
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. 2008. Regulatory T cells and immune tolerance. Cell. 133(5):775–787. doi: 10.1016/j.cell.2008.05.009.
  • Sano K, Ainai A, Suzuki T, Hasegawa H. 2018. Intranasal inactivated influenza vaccines for the prevention of seasonal influenza epidemics. Expert Rev Vaccines. 17(8):687–696. doi: 10.1080/14760584.2018.1507743.
  • Savage HP, Yenson VM, Sawhney SS, Mousseau BJ, Lund FE, Baumgarth N. 2017. Blimp-1-dependent and -independent natural antibody production by B-1 and B-1-derived plasma cells. J Exp Med. 214(9):2777–2794. doi: 10.1084/jem.20161122.
  • Schat KA, Kaspers B, Kaiser P. 2014. Avian immunology. Second edition. ed. Elsevier: academic Press, Amsterdam; Boston
  • Scheffold A, Hühn J, Höfer T. 2005. Regulation of CD4 + CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur J Immunol. 35(5):1336–1341. doi: 10.1002/eji.200425887.
  • Schneider K, Puehler F, Baeuerle D, Elvers S, Staeheli P, Kaspers B, Weining KC. 2000. cDNA cloning of biologically active chicken interleukin-18. J Interferon Cytokine Res. 20(10):879–883., doi: 10.1089/10799900050163244.
  • Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF. 2001. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem. 276(40):37672–37679. doi: 10.1074/jbc.M104521200.
  • Selvaraj RK. 2013. Avian CD4(+)CD25(+) regulatory T cells: properties and therapeutic applications. Dev Comp Immunol. 41(3):397–402. doi: 10.1016/j.dci.2013.04.018.
  • Seo SH, Webster RG. 2001. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J Virol. 75(6):2516–2525. doi: 10.1128/JVI.75.6.2516-2525.2001.
  • Seto F. 1981. Early development of the avian immune system. Poult Sci. 60(9):1981–1995. doi: 10.3382/ps.0601981.
  • Shack LA, Buza JJ, Burgess SC. 2008. The neoplastically transformed (CD30hi) Marek’s disease lymphoma cell phenotype most closely resembles T-regulatory cells. Cancer Immunol Immunother. 57(8):1253–1262. doi: 10.1007/s00262-008-0460-2.
  • Shanmugasundaram R, Selvaraj RK. 2011. Regulatory T cell properties of chicken CD4 + CD25+ cells. J Immunol. 186(4):1997–2002. doi: 10.4049/jimmunol.1002040.
  • Shanmugasundaram R, Selvaraj RK. 2012. Effects of in vivo injection of anti-chicken CD25 monoclonal antibody on regulatory T cell depletion and CD4 + CD25- T cell properties in chickens. Dev Comp Immunol. 36(3):578–583. doi: 10.1016/j.dci.2011.09.015.
  • Shanmugasundaram R, Selvaraj RK. 2013. In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4 + CD25+ T cells in chickens. Poult Sci. 92(1):138–142. doi: 10.3382/ps.2012-02593.
  • Shen Y-Y, Ke C-W, Li Q, Yuan R-Y, Xiang D, Jia W-X, Yu Y-D, Liu L, Huang C, Qi W-B, et al. 2016. Novel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015. Emerg Infect Dis. 22(8):1507–1509. doi: 10.3201/eid2208.160146.
  • Shevach EM. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 30(5):636–645. doi: 10.1016/j.immuni.2009.04.010.
  • Shrestha A, Sadeyen J-R, Lukosaityte D, Chang P, Smith A, Van Hulten M, Iqbal M. 2021. Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian influenza. NPJ Vaccines. 6(1):90., doi: 10.1038/s41541-021-00350-3.
  • Shrestha A, Sadeyen JR, Lukosaityte D, Chang P, Van Hulten M, Iqbal M. 2021. Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines (Basel. 9(7):784. doi: 10.3390/vaccines9070784.
  • Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 122(3):787–795. doi: 10.1172/JCI59643.
  • Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, Bean T, Barclay W, Deeks JJ, Lalvani A, et al. 2013. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 19(10):1305–1312. doi: 10.1038/nm.3350.
  • Stein-Streilein J, Guffee J. 1986. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J Immunol. 136(4):1435–1441.
  • Stoop JN, van der Molen RG, Baan CC, van der Laan LJW, Kuipers EJ, Kusters JG, Janssen HLA. 2005. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 41(4):771–778., doi: 10.1002/hep.20649.
  • Straub C, Neulen M-L, Sperling B, Windau K, Zechmann M, Jansen CA, Viertlboeck BC, Göbel TW. 2013. Chicken NK cell receptors. Dev Comp Immunol. 41(3):324–333., doi: 10.1016/j.dci.2013.03.013.
  • Sun X, Xu X, Liu Q, Liang D, Li C, He Q, Jiang J, Cui Y, Li J, Zheng L, et al. 2013. Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infect Genet Evol. 20:471–475. doi: 10.1016/j.meegid.2013.10.012.
  • Survashe B, Altken I. 1977. Further observations on functional deletion of paraocular glands in the fowl (Galius domesticus). Res Vet Sci. 23(2):217–223. doi: 10.1016/S0034-5288(18)33157-6.
  • Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. 2003. CD4 + CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med. 198(6):889–901. doi: 10.1084/jem.20030171.
  • Suzuki T, Kawaguchi A, Ainai A, et al. 2015. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proceedings of the National Academy of Sciences of the United States of America 112:p. 7809–7814. doi: 10.1073/pnas.1503885112.
  • Swayne DE, Kapczynski D. 2008. Strategies and challenges for eliciting immunity against avian influenza virus in birds. Immunol Rev. 225:314–331. doi: 10.1111/j.1600-065X.2008.00668.x.
  • Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. 2003. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 21:713–758. doi: 10.1146/annurev.immunol.21.120601.140942.
  • Szenberg A, Warner NL. 1962. Dissociation of immunological responsiveness in fowls with hormonally arrested development of lymphoid tissues. Nature. 194(4824):146–147. doi: 10.1038/194146b0.
  • Takeuchi O, Akira S. 2009. Innate immunity to virus infection. Immunol Rev. 227(1):75–86. doi: 10.1111/j.1600-065X.2008.00737.x.
  • Tamura S, Funato H, Hirabayashi Y, Suzuki Y, Nagamine T, Aizawa C, Kurata T. 1991. Cross-protection against influenza A virus infection by passively transferred respiratory tract IgA antibodies to different hemagglutinin molecules. Eur J Immunol. 21(6):1337–1344., doi: 10.1002/eji.1830210602.
  • Tanaka A, Sakaguchi S. 2017. Regulatory T cells in cancer immunotherapy. Cell Res. 27(1):109–118. doi: 10.1038/cr.2016.151.
  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. 2005. Macrophage receptors and immune recognition. Annu Rev Immunol. 23:901–944. doi: 10.1146/annurev.immunol.23.021704.115816.
  • Teng QY, Zhou JY, Wu JJ, Guo JQ, Shen HG. 2006. Characterization of chicken interleukin 2 receptor alpha chain, a homolog to mammalian CD25. FEBS Lett. 580(17):4274–4281. doi: 10.1016/j.febslet.2006.06.044.
  • Toro H, Fernandez I. 1994. Avian infectious bronchitis: specific lachrymal IgA level and resistance against challenge. Zentralbl Veterinarmed B. 41(7-8):467–472. doi: 10.1111/j.1439-0450.1994.tb00252.x.
  • Uyeki TM, Nguyen DC, Rowe T, Lu X, Hu-Primmer J, Huynh LP, Hang NLK, Katz JM. 2012. Seroprevalence of antibodies to avian influenza A (H5) and A (H9) viruses among market poultry workers, Hanoi, Vietnam, 2001. PLoS One. 7(8):e43948., doi: 10.1371/journal.pone.0043948.
  • Vainio O, Koch C, Toivanen A. 1984. B-L antigens (class II) of the chicken major histocompatibility complex control T-B cell interaction. Immunogenetics. 19(2):131–140. doi: 10.1007/BF00387856.
  • Van Campen H, Easterday BC, Hinshaw VS. 1989. Virulent avian influenza A viruses: their effect on avian lymphocytes and macrophages in vivo and in vitro. J Gen Virol. 70(11):2887–2895. doi: 10.1099/0022-1317-70-11-2887.
  • Vervelde L, Matthijs MG, van Haarlem DA, de Wit JJ, Jansen CA. 2013. Rapid NK-cell activation in chicken after infection with infectious bronchitis virus M41. Vet Immunol Immunopathol. 151(3-4):337–341. doi: 10.1016/j.vetimm.2012.11.012.
  • Voskoboinik I, Smyth MJ, Trapani JA. 2006. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 6(12):940–952. doi: 10.1038/nri1983.
  • Wang J, Tang C, Wang Q, Li R, Chen Z, Han X, Wang J, Xu X. 2015. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet Microbiol. 177(3-4):302–314., doi: 10.1016/j.vetmic.2015.04.005.
  • Warner NL, Szenberg A, Burnet FM. 1962. The immunological role of different lymphoid organs in the chicken. I. Dissociation of immunological responsiveness. Aust J Exp Biol Med Sci. 40:373–387. doi: 10.1038/icb.1962.42.
  • Warner NL, Szenberg A. 1962. Effect of neonatal thymectomy on the immune response in the chicken. Nature. 196:784–785. doi: 10.1038/196784a0.
  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol Rev. 56(1):152–179. doi: 10.1128/mr.56.1.152-179.1992.
  • Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA. 2009. The development and function of regulatory T cells. Cell Mol Life Sci. 66(16):2603–2622. doi: 10.1007/s00018-009-0026-2.
  • Wu R, Chen Q, Zheng L, Chen J, Sui Z, Guan Y, Chen Z. 2009. Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza. Arch Virol. 154(8):1203–1210., doi: 10.1007/s00705-009-0425-6.
  • Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol. 22(4):183–191. doi: 10.1016/j.tim.2014.01.010.
  • Wu Z, Hu T, Kaiser P. 2011. Chicken CCR6 and CCR7 are markers for immature and mature dendritic cells respectively. Dev Comp Immunol. 35(5):563–567. doi: 10.1016/j.dci.2010.12.015.
  • Wu Z, Rothwell L, Young JR, Kaufman J, Butter C, Kaiser P. 2010. Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology. 129(1):133–145. doi: 10.1111/j.1365-2567.2009.03129.x.
  • Xing Z, Cardona CJ, Adams S, Yang Z, Li J, Perez D, Woolcock PR. 2009. Differential regulation of antiviral and proinflammatory cytokines and suppression of Fas-mediated apoptosis by NS1 of H9N2 avian influenza virus in chicken macrophages. J Gen Virol. 90(Pt 5):1109–1118., doi: 10.1099/vir.0.007518-0.
  • Xing Z, Cardona CJ, Li J, Dao N, Tran T, Andrada J. 2008. Modulation of the immune responses in chickens by low-pathogenicity avian influenza virus H9N2. J Gen Virol. 89(Pt 5):1288–1299. doi: 10.1099/vir.0.83362-0.
  • Xu L, Huang Y, Yang J, Van Der Meide PH, Levi M, Wahren B, Link H, Xiao B. 1999. Dendritic cell-derived nitric oxide is involved in IL-4-induced suppression of experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol. 118(1):115–121., doi: 10.1046/j.1365-2249.1999.01029.x.
  • Xu X, Qian J, Qin L, Li J, Xue C, Ding J, Wang W, Ding W, Yin R, Jin N, et al. 2020. Chimeric Newcastle Disease Virus-like Particles Containing DC-Binding Peptide-Fused Haemagglutinin Protect Chickens from Virulent Newcastle Disease Virus and H9N2 Avian Influenza Virus Challenge. Virol Sin. 35(4):455–467., doi: 10.1007/s12250-020-00199-1.
  • Yang J, Huang X, Liu Y, Zhao D, Han K, Zhang L, Li Y, Liu Q. 2020. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Vet Res. 51(1):132., doi: 10.1186/s13567-020-00856-z.
  • Yasuda M, Kajiwara E, Ekino S, Taura Y, Hirota Y, Horiuchi H, Matsuda H, Furusawa S. 2003. Immunobiology of chicken germinal center: i. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. Dev Comp Immunol. 27(2):159–166., doi: 10.1016/s0145-305x(02)00066-6.
  • Yasuda M, Taura Y, Yokomizo Y, Ekino S. 1998. A comparative study of germinal center: fowls and mammals. Comp Immunol Microbiol Infect Dis. 21(3):179–189. doi: 10.1016/s0147-9571(98)00007-1.
  • Zhao X, Dai J, Xiao X, Wu L, Zeng J, Sheng J, Su J, Chen X, Wang G, Li K, et al. 2014. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One. 9(8):e104506. doi: 10.1371/journal.pone.0104506.
  • Zhirnov OP, Klenk HD. 2007. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis. 12(8):1419–1432. doi: 10.1007/s10495-007-0071-y.
  • Zhou G, Juang SW, Kane KP. 2013. NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol. 43(4):929–938. doi: 10.1002/eji.201242620.
  • Zou J, Chang M, Nie P, Secombes CJ. 2009. Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol. 9:85. doi: 10.1186/1471-2148-9-85.