908
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Diabetes mellitus drug discovery: insights into targeting feline and human amylin with small molecules

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Received 15 May 2023, Accepted 13 Sep 2023, Published online: 04 Oct 2023

References

  • Azam F, Prasad MV, Thangavel N, Shrivastava AK, Mohan G. 2012. Structure-based design, synthesis and molecular modeling studies of thiazolyl urea derivatives as novel anti-parkinsonian agents. Med Chem. 8(6):1057–1068. doi: 10.2174/1573406411208061057.
  • Betsholtz C, Christmanson L, Engström U, Rorsman F, Jordan K, O’Brien TD, Murtaugh M, Johnson KH, Westermark P. 1990. Structure of cat islet amyloid polypeptide and identification of amino acid residues of potential significance for islet amyloid formation. Diabetes. 39(1):118–122. doi: 10.2337/diacare.39.1.118.
  • Betsholtz C, Christmansson L, Engström U, Rorsman F, Svensson V, Johnson KH, Westermark P. 1989. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett. 251(1-2):261–264. doi: 10.1016/0014-5793(89)81467-x.
  • Bhagat V, Verchere CB. 2023. A small molecule improves diabetes in mice expressing human islet amyloid polypeptide. Islets. 15(1):12–15. doi: 10.1080/19382014.2022.2163829.
  • Bloem BR, Okun MS, Klein C. 2021. Parkinson’s disease. Lancet. 397(10291):2284–2303. doi: 10.1016/S0140-6736(21)00218-X.
  • Busche MA, Hyman BT. 2020. Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci. 23(10):1183–1193. doi: 10.1038/s41593-020-0687-6.
  • Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. 2004. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes. 53(6):1509–1516. doi: 10.2337/diabetes.53.6.1509.
  • Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P. 2022. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 29(4):213–219. doi: 10.1080/13506129.2022.2147636.
  • Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. 2020. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol. 27(7):653–659. doi: 10.1038/s41594-020-0435-3.
  • Choi BC, Shi F. 2001. Risk factors for diabetes mellitus by age and sex: results of the National Population Health Survey. Diabetologia. 44(10):1221–1231. doi: 10.1007/s001250100648.
  • Cox SJ, Rodriguez Camargo DC, Lee Y-H, Dubini RCA, Rovó P, Ivanova MI, Padmini V, Reif B, Ramamoorthy A. 2020. Small molecule induced toxic human-IAPP species characterized by NMR. Chem Commun. 56(86):13129–13132. doi: 10.1039/d0cc04803h.
  • Elkamhawy A, Park J-E, Hassan AHE, Ra H, Pae AN, Lee J, Park B-G, Moon B, Park H-M, Roh EJ, et al. 2017. Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: a new modulator for amyloid beta-induced mitochondrial dysfunction. Eur J Med Chem. 128:56–69. doi: 10.1016/j.ejmech.2016.12.057.
  • Fortin JS, Benoit-Biancamano M-O, C-Gaudreault R. 2016. Discovery of ethyl urea derivatives as inhibitors of islet amyloid polypeptide fibrillization and cytotoxicity. Can J Physiol Pharmacol. 94(3):341–346. doi: 10.1139/cjpp-2015-0204.
  • Galamba N. 2022. Aggregation of a Parkinson’s disease-related peptide: when does urea weaken hydrophobic interactions? ACS Chem Neurosci. 13(12):1769–1781. doi: 10.1021/acschemneuro.2c00169.
  • García-Viñuales S, Ilie IM, Santoro AM, Romanucci V, Zarrelli A, Di Fabio G, Caflisch A, Milardi D. 2022. Silybins inhibit human IAPP amyloid growth and toxicity through stereospecific interactions. Biochim Biophys Acta Proteins Proteom. 1870(5):140772. doi: 10.1016/j.bbapap.2022.140772.
  • Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, Tene-Perez CE, Goldschmidt L, Hart J, Perego C, et al. 2009. Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci U S A. 106(33):13992–13997. doi: 10.1073/pnas.0906471106.
  • Gut WN. 2019. Efficacy and mechanism of action of long-term treatment with antibody NI-203.26C11 targeting aggregated IAPP in type 2 diabetes. University of Zurich. doi: 10.5167/uzh-175725.
  • Haataja L, Gurlo T, Huang CJ, Butler PC. 2008. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 29(3):303–316. doi: 10.1210/er.2007-0037.
  • Hull RL, Westermark GT, Westermark P, Kahn SE. 2004. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 89(8):3629–3643. doi: 10.1210/jc.2004-0405.
  • Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. 2018. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol. 19(12):755–773. doi: 10.1038/s41580-018-0060-8.
  • Kim JR, Muresan A, Lee KY, Murphy RM. 2004. Urea modulation of beta-amyloid fibril growth: experimental studies and kinetic models. Protein Sci. 13(11):2888–2898. doi: 10.1110/ps.04847404.
  • King KM, Bevan DR, Brown AM. 2022. Molecular dynamics simulations indicate aromaticity as a key factor in the inhibition of IAPP((20-29)) aggregation. ACS Chem Neurosci. 13(11):1615–1626. doi: 10.1021/acschemneuro.2c00025.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 46(1-3):3–26. doi: 10.1016/s0169-409x(00)00129-0.
  • Lorenzo A, Razzaboni B, Weir GC, Yankner BA. 1994. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 368(6473):756–760. doi: 10.1038/368756a0.
  • Lutz TA. 2010. The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol. 298(6):R1475–84. doi: 10.1152/ajpregu.00703.2009.
  • Maity D. 2023. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophys Chem. 297:107022. doi: 10.1016/j.bpc.2023.107022.
  • Mannam MR, Devine SR, Pavuluri CM, Chamarthi NR, Kottapalli RSP. 2019. Urea and thiourea derivatives of 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1, 2, 4]triazolo[4,3-a]pyrazine: synthesis, characterization, antimicrobial activity and docking studies. Phosphorus Sulfur Silicon Relat Elem. 194(9):922–932. doi: 10.1080/10426507.2019.1577845.
  • Martinez Pomier K, Ahmed R, Melacini G. 2022. Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: from mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem. 282:106743. doi: 10.1016/j.bpc.2021.106743.
  • McCann TM, Simpson KE, Shaw DJ, Butt JA, Gunn-Moore DA. 2007. Feline diabetes mellitus in the UK: the prevalence within an insured cat population and a questionnaire-based putative risk factor analysis. J Feline Med Surg. 9(4):289–299. doi: 10.1016/j.jfms.2007.02.001.
  • Meleleo D, Gerbino A, Mastrodonato M. 2022. Evidence of the different effect of mercury and cadmium on the hIAPP aggregation process. Biophys Chem. 290:106880. doi: 10.1016/j.bpc.2022.106880.
  • Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A, et al. 2021. Proteostasis of islet amyloid polypeptide: a molecular perspective of risk factors and protective strategies for type II diabetes. Chem Rev. 121(3):1845–1893. doi: 10.1021/acs.chemrev.0c00981.
  • Mounetou E, Miot-Noirault E, Gaudreault RC, Madelmont JC. 2010. N-4-iodophenyl-N’-2-chloroethylurea, a novel potential anticancer agent with colon-specific accumulation: radioiodination and comparative in vivo biodistribution profiles. Invest New Drugs. 28(2):124–131. doi: 10.1007/s10637-009-9222-z.
  • Muchtar E, Dispenzieri A, Magen H, Grogan M, Mauermann M, McPhail ED, Kurtin PJ, Leung N, Buadi FK, Dingli D, et al. 2021. Systemic amyloidosis from A (AA) to T (ATTR): a review. J Intern Med. 289(3):268–292. doi: 10.1111/joim.13169.
  • O’Brien TD. 2002. Pathogenesis of feline diabetes mellitus. Mol Cell Endocrinol. 197(1-2):213–219. doi: 10.1016/s0303-7207(02)00265-4.
  • O’Neill DG, Gostelow R, Orme C, Church DB, Niessen SJM, Verheyen K, Brodbelt DC. 2016. Epidemiology of diabetes mellitus among 193,435 cats attending primary-care veterinary practices in England. J Vet Intern Med. 30(4):964–972. doi: 10.1111/jvim.14365.
  • Patel AG, Toyama MT, Alvarez C, Nguyen TN, Reber PU, Ashley SW, Reber HA. 1995. Pancreatic interstitial pH in human and feline chronic pancreatitis. Gastroenterology. 109(5):1639–1645. doi: 10.1016/0016-5085(95)90654-1.
  • Petitclerc E, Deschesnes RG, Côté M-F, Marquis C, Janvier R, Lacroix J, Miot-Noirault E, Legault J, Mounetou E, Madelmont J-C, et al. 2004. Antiangiogenic and antitumoral activity of phenyl-3-(2-chloroethyl)ureas: a class of soft alkylating agents disrupting microtubules that are unaffected by cell adhesion-mediated drug resistance. Cancer Res. 64(13):4654–4663. doi: 10.1158/0008-5472.CAN-03-3715.
  • Pithadia A, Brender JR, Fierke CA, Ramamoorthy A. 2016. Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res. 2016:2046327–2046312. doi: 10.1155/2016/2046327.
  • Prahl A, Guptill L, Glickman NW, Tetrick M, Glickman LT. 2007. Time trends and risk factors for diabetes mellitus in cats presented to veterinary teaching hospitals. J Feline Med Surg. 9(5):351–358. doi: 10.1016/j.jfms.2007.02.004.
  • Radhakrishnan P, Bryant VC, Blowers EC, Rajule RN, Gautam N, Anwar MM, Mohr AM, Grandgenett PM, Bunt SK, Arnst JL, et al. 2013. Targeting the NF-kappaB and mTOR pathways with a quinoxaline urea analog that inhibits IKKbeta for pancreas cancer therapy. Clin Cancer Res. 19(8):2025–2035. doi: 10.1158/1078-0432.CCR-12-2909.
  • Rand JS. 2013. Pathogenesis of feline diabetes. Vet Clin North Am Small Anim Pract. 43(2):221–231. doi: 10.1016/j.cvsm.2013.01.003.
  • Rodriguez Camargo DC, Garg D, Buday K, Franko A, Rodriguez Camargo A, Schmidt F, Cox SJ, Suladze S, Haslbeck M, Mideksa YG, et al. 2018. hIAPP forms toxic oligomers in plasma. Chem Commun. 54(43):5426–5429. doi: 10.1039/c8cc03097a.
  • Sevcuka A, White K, Terry C. 2022. Factors that contribute to hIAPP amyloidosis in type 2 diabetes mellitus. Life. 12(4):583. doi: 10.3390/life12040583.
  • Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. 2022. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:109119. doi: 10.1016/j.diabres.2021.109119.
  • Wang L, Colon W. 2005. Urea-induced denaturation of apolipoprotein serum amyloid A reveals marginal stability of hexamer. Protein Sci. 14(7):1811–1817. doi: 10.1110/ps.051387005.
  • Wang Y, Hu T, Wei J, Yin X, Gao Z, Li H. 2022. Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation. Int J Biol Macromol. 215:531–540. doi: 10.1016/j.ijbiomac.2022.06.107.
  • Westermark GT, Falkmer S, Steiner DF, Chan SJ, Engstrom U, Westermark P. 2002. Islet amyloid polypeptide is expressed in the pancreatic islet parenchyma of the teleostean fish, Myoxocephalus (cottus) scorpius. Comp Biochem Physiol B Biochem Mol Biol. 133(1):119–125. doi: 10.1016/s1096-4959(02)00113-6.
  • Westermark P, Andersson A, Westermark GT. 2011. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 91(3):795–826. doi: 10.1152/physrev.00042.2009.
  • Zhang M, Ren B, Liu Y, Liang G, Sun Y, Xu L, Zheng J. 2017. Membrane interactions of hIAPP monomer and oligomer with lipid membranes by molecular dynamics simulations. ACS Chem Neurosci. 8(8):1789–1800. doi: 10.1021/acschemneuro.7b00160.