624
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of biological selenium nanoparticles on growth performance, histopathology of vital organs and genotoxicity in Japanese quails (coturnix coturnix japonica)

, , , , , & show all
Pages 1-10 | Received 28 Dec 2023, Accepted 10 Feb 2024, Published online: 01 Apr 2024

References

  • Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Capra A, Carruth C, Cesar CL, Charlton M, Cohen S, Collister R, et al. 2018. Characterization of the 1S–2S transition in antihydrogen. Nature. 557(7703):71–75. doi: 10.1038/s41586-018-0017-2.
  • Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M. 2016. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health. 32(5):809–821. doi: 10.1177/0748233713511512.
  • Alagawany M, Qattan SYA, Attia YA, El-Saadony MT, Elnesr SS, Mahmoud MA, Madkour M, Abd El-Hack ME, Reda FM. 2021. Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals. 11(11):3027. doi: 10.3390/ani11113027.
  • Aslam B, Hussain A, Faisal MN, Sindhu ZD, RU Khan, Alhidary IA, Naz S, Tufarelli V. 2023. Curcumin coencapsulation potentiates anti-arthritic efficacy of meloxicam biodegradable nanoparticles in adjuvant-induced arthritis animal model. Biomedicines. 11:2662. https://doi.org/10.3390/biomedicines11102662
  • Auon M, Mahmood F, Khan A, Hussain R. 2014. Testicular and genotoxic effects induced by subchronic oral administration of chlorpyrifos in Japanese quail (Coturnix japonica). Pak J Agric Sci. 51(4):158–167.
  • Bami MK, Afsharmanesh M, Espahbodi M, Esmaeilzadeh E. 2022. Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol. 69(5):126897–126899. doi: 10.1016/j.jtemb.2021.126897.
  • Aziz S, Abdullah S, Anwar H, Latif F. 2022. DNA damage and oxidative stress in economically important fish, bighead carp (Hypophthalmichthys nobilis) exposed to engineered copper oxide nanoparticles. Pak Vet J. 42(1):1–8.
  • Batra G, Gortzi O, Lalas SI, Galidi A, Alibade A, Nanos GD. 2017. Enhanced antioxidant activity of Capsicum annuum L. and Moringa oleifera L. extracts after encapsulation in microemulsions. Chem Eng. 1(2):15–18. doi: 10.3390/chemengineering1020015.
  • Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N. 2015. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci. 178:330–336. doi: 10.1016/j.livsci.2015.05.004.
  • Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhao C. 2022. Selenium nanoparticles: enhanced nutrition and beyond. Crit Rev Food Sci Nutr. 63(4):1–12.
  • Dang F, Huang Y, Wang Y, Zhou D, Xing B. 2021. Transfer and toxicity of silver nanoparticles in the food chain. Environ Sci Nano. 8(6):1519–1535. doi: 10.1039/D0EN01190H.
  • Dawood MA, Zommara M, Eweedah NM, Helal AI, Aboel-Darag MA. 2020. The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res Int. 27(9):9843–9852. doi: 10.1007/s11356-020-07651-5.
  • De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Badetti E, Marcomini A, Gosens I, Cassee FR. 2019. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology. 13(1):50–72. doi: 10.1080/17435390.2018.1530390.
  • Eid YZ, Omara Y, Ragab A, Ismail A, Zommara M, Dawood MA. 2023. Mitigation of imidacloprid toxicity in poultry chicken by selenium nanoparticles: growth performance, lipid peroxidation, and blood traits. Biol Trace Elem Res. 201(11):5379–5388. doi: 10.1007/s12011-023-03592-5.
  • Eid YZ, Zomara M, Tawfeek FA. 2022. Effect of the biologically produced nanoselenium dietary supplementation on growth performance, carcass characteristics, blood parameters, and economic efficiency in broiler chickens. AJVS. 73(2):47–47. doi: 10.5455/ajvs.44970.
  • Eldeeb F, Ibrahim HH. 2023. Impact of adding different levels of nanoselenium to duck diets on growth performance, immunity status, antioxidant activity and some blood parameters. J Adv Vet Res. 13(8):1642–1649.
  • El-Kazaz SE, Abo-Samaha MI, Hafez MH, El-Shobokshy SA, Wirtu G. 2020. Dietary supplementation of nano-selenium improves reproductive performance, sexual behavior and deposition of selenium in the testis and ovary of Japanese quail. J Adv Vet Anim Res. 7(4):597–607. doi: 10.5455/javar.2020.g457.
  • Fotouh A, Gab-Allah MS, Tantawy AA, Soufy H, Nasr SM. 2014. Alterations of blood components in broiler chicks experimentally infected with Salmonella Gallinarum. Global Veterinaria. 13:787–793.
  • Foroutankhah M, Toghyani M, Landy N. 2019. Evaluation of Calendula officinalis L.(marigold) flower as a natural growth promoter in comparison with an antibiotic growth promoter on growth performance, carcass traits and humoral immune responses of broilers. Anim Nutr. 5(3):314–318. doi: 10.1016/j.aninu.2019.04.002.
  • Hassan MA, Shehabeldin A, Omar M, Khalil WA, Swelum AA, Lu Y, Abdelnour SA. 2023. Effect of spirulina nanoparticles or selenium-coated spirulina nanoparticles supplemented to freezing extender on bull sperm freezability. Pak Vet J. 43(4):739–747.
  • Hussain R, Mahmood F, Khan MZ, Khan A, Muhammad F. 2011. Pathological and genotoxic effects of atrazine in male Japanese quail (Coturnix japonica). Ecotoxicology. 20(1):1–8. doi: 10.1007/s10646-010-0515-y.
  • Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi IJ. 2023. Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with selenium nanoparticles. Bionanoscience. 13(1):249–277. doi: 10.1007/s12668-023-01059-4.
  • Jamima J, Veeramani P, Kumanan K, Kanagaraju P. 2020. Production performance, hematology and serum biochemistry of commercial broilers supplemented with nano selenium and other anti-stressors during summer. IJAR. 54(of):1385–1390. doi: 10.18805/ijar.B-3902.
  • Jiang Z, Lin Y, Zhou G, Luo L, Jiang S, Chen F. 2009. Effects of dietary selenomethionine supplementation on growth performance, meat quality and antioxidant property in yellow broilers. J Agric Food Chem. 57(20):9769–9772. doi: 10.1021/jf902411c.
  • Karlsson HL. 2010. The comet assay in nanotoxicology research. Anal Bioanal Chem. 398(2):651–666. doi: 10.1007/s00216-010-3977-0.
  • Kassim AS, Ali AHH, Marwan TA, Abdel-Wareth AAA. 2022. Selenium nanoparticles in rabbit nutrition. A review. SVU-IJAS. 4(1):90–98. doi: 10.21608/svuijas.2022.117298.1171.
  • Khalaf AA, Zaki AR, Galal MK, Ogaly HA, Ibrahim MA, Hassan A. 2017. The potential effect of alpha-liponic acid against nanocopper particle-induced hepatotoxicity in male rates. Hum Exp Toxicol. 36(9):881–891. doi: 10.1177/0960327116674526.
  • Khan I, Zaneb H, Masood S, Ashraf S, Rehman HF, Rehman HU, Ahmad S, Taj R, Rahman SU. 2022. Supplemental selenium nanoparticles-loaded to chitosan improves meat quality, pectoral muscle histology, tibia bone morphometry and tissue mineral retention in broilers. Pak Vet J. 42(2):236–240.
  • Kieliszek M, Błażejak S. 2013. Selenium: significance, and outlook for supplementation. Nutrition. 29(5):713–718. doi: 10.1016/j.nut.2012.11.012.
  • Kousar S, Javed M. 2015. Diagnosis of metals induced DNA damage in fish using comet assay. Pak Vet J. 35(2):168–172.
  • Kumar A, Prasad KS. 2021. Role of nano-selenium in health and environment. J Biotechnol. 325(3):152–163. doi: 10.1016/j.jbiotec.2020.11.004.
  • Landy N, Kheiri F, Faghani M. 2020. Evaluation of cottonseed bioactive peptides on growth performance, carcase traits, immunity, total antioxidant activity of serum and intestinal morphology in broiler chickens. Ital J Anim Sci. 19(1):1375–1386. doi: 10.1080/1828051X.2020.1844085.
  • Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW. 2009. Toxicity of nano-and micro-sized ZnO particles in human lungs epithelial cells. J Nanopart Res. 11(1):25–39. doi: 10.1007/s11051-008-9419-7.
  • Malyugina S, Skalickova S, Skladanka J, Slama P, Horky P. 2021. Biogenic selenium nanoparticles in animal nutrition: a review. Agriculture. 11(12):1244. doi: 10.3390/agriculture11121244.
  • Masour ES, Hh A, A, Shawky N, El RasHidy R, S H A. 2014. Studies on effect of salmonella pullorum in balady chicks and its treatment with doxycycline. Zagazig Vet J. 42(3):145–156. doi: 10.21608/zvjz.2014.60061.
  • Medina Cruz D, Mi G, Webster TJ. 2018. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A. 106(5):1400–1412. doi: 10.1002/jbm.a.36347.
  • Mohamed HS, Rizk YS, Elslamony AE, Soliman AA, Ebrahim AF. 2016. Study the relationship between selenium and heat shock proteins under heat stress for local sinai chickens strain. EPSJ. 36(1):337–354. doi: 10.21608/epsj.2016.33379.
  • Monteith AJ, Skaar EP. 2021. The impact of metal availability on immune function during infection. Trends Endocrinol Metab. 32(11):916–928. doi: 10.1016/j.tem.2021.08.004.
  • Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN. 2014. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci. 79(4):M675–M684. doi: 10.1111/1750-3841.12400.
  • Naz S, Raza N, Alhidary I, Satti S, Rafique A, Batool S, Shamsi S, Dai S, RU Khan. 2024. Evaluation of copper nanoparticles on growth, organs histology and DNA damage in Japanese quails (Coturnix coturnix japonica). Toxin Reviews. doi: 10.1080/15569543.2023.2298909.
  • Nikdehghan N, Kashiri H, Hedayati AA. 2018. CuO nanoparticles-induced micronuclei and DNA damage in Cyprinus carpio. AACL Bioflux. 11(3):112–116.
  • Ostovar M, Saberi N, Ghiassi R. 2022. Selenium contamination in water; analytical and removal methods: a comprehensive review. Sep Sci Technol. 57(15):2500–2520. doi: 10.1080/01496395.2022.2074861.
  • Reda FM, El-Saadony MT, Elnesr SS, Alagawany M, Tufarelli V. 2020. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals. 10(5):754. doi: 10.3390/ani10050754.
  • Reda FM, El-Saadony MT, El-Rayes TK, Attia AI, El-Sayed SAA, Ahmed SYA, Madkour M, Alagawany M. 2021. Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Ital J Anim Sci. 20(1):324–335. doi: 10.1080/1828051X.2021.1886001.
  • Sa’aci ZA, Jiya EZ, Ijaiya AT. 2021. Influence of dietary nano zinc and selenium supplementation on growth performance, nutrients digestibility and carcass characteristics of broiler chickens. Niger J Anim Sci. 23(3):185–198.
  • Saleh AA, Ebeid TA. 2019. Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. SA J Anim Sci. 49(1):176–183. doi: 10.4314/sajas.v49i1.20.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 175(1):184–191. doi: 10.1016/0014-4827(88)90265-0.
  • Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H, Tchounwou PB. 2011. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ. 409(22):4753–4762. doi: 10.1016/j.scitotenv.2011.07.039.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterial: the role of particle size, shape and composition. J Appl Toxicol. 29(1):69–78. doi: 10.1002/jat.1385.
  • Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. 2021. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci. 22(3):989. doi: 10.3390/ijms22030989.