205
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effectiveness and Users’ Perceptions of Upper Extremity Exoskeletons and Robot-Assisted Devices in Children with Physical Disabilities: Systematic Review

, & ORCID Icon
Pages 336-379 | Received 12 Aug 2022, Accepted 02 Aug 2023, Published online: 27 Aug 2023

References

  • Babik, I., Cunha, A. B., & Lobo, M. A. (2019). Play with objects in children with arthrogryposis: Effects of intervention with the Playskin Lift™ exoskeletal garment. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 181(3), 393–403. https://doi.org/10.1002/ajmg.c.31719
  • Babik, I., Cunha, A. B., & Lobo, M. A. (2021). Assistive and rehabilitative effects of the Playskin LiftTM exoskeletal garment on reaching and object exploration in children with arthrogryposis. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 75(1), 1–10. https://doi.org/10.5014/ajot.2020.040972
  • Babik, I., Cunha, A. B., Moeyaert, M., Hall, M. L., Paul, D. A., Mackley, A., & Lobo, M. A. (2019). Feasibility and effectiveness of intervention with the playskin lift exoskeletal garment for infants at risk. Physical Therapy, 99(6), 666–676. https://doi.org/10.1093/ptj/pzz035
  • Babik, I., Kokkoni, E., Cunha, A. B., Galloway, J. C., Rahman, T., & Lobo, M. A. (2016). Feasibility and effectiveness of a novel exoskeleton for an infant with arm movement impairments. Pediatric Physical Therapy: The Official Publication of the Section on Pediatrics of the American Physical Therapy Association, 28(3), 338–346. https://doi.org/10.1097/PEP.0000000000000271
  • Beretta, E., Cesareo, A., Biffi, E., Schafer, C., Galbiati, S., & Strazzer, S. (2018). Rehabilitation of upper limb in children with acquired brain injury: A preliminary comparative study. Journal of Healthcare Engineering, 2018, 4208492. https://doi.org/10.1155/2018/4208492
  • Bertani, R., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(9), 1561–1569. https://doi.org/10.1007/s10072-017-2995-5
  • Bidzan-Bluma, I., & Lipowska, M. (2018). Physical activity and cognitive functioning of children: A systematic review. International Journal of Environmental Research and Public Health, 15(4), 800. https://doi.org/10.3390/ijerph15040800
  • Biffi, E., Maghini, C., Cairo, B., Beretta, E., Peri, E., Altomonte, D., Mazzoli, D., Giacobbi, M., Prati, P., Merlo, A., & Strazzer, S. (2018). Movement velocity and fluidity improve after Armeo® Spring rehabilitation in children affected by acquired and congenital brain diseases: An observational study. BioMed Research International, 2018, 1537170. https://doi.org/10.1155/2018/1537170
  • Bishop, L., Gordon, A. M., & Kim, H. (2017). Hand robotic therapy in children with hemiparesis: A pilot study. American Journal of Physical Medicine & Rehabilitation, 96(1), 1–7. https://doi.org/10.1097/PHM.0000000000000537
  • Bono, G. L. P., Achermann, P., Rückriem, B., Lieber, J., & van Hedel, H. J. A. (2022). Goal-directed personalized upper limb intensive therapy (PULIT) for children with hemiparesis: A retrospective analysis. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 76(6), 7606205050. https://doi.org/10.5014/ajot.2022.049008
  • Bornstein, M. H., & Hendricks, C. (2013). Screening for developmental disabilities in developing countries. Social Science & Medicine (1982), 97, 307–315. https://doi.org/10.1016/j.socscimed.2012.09.049
  • Bressi, F., Santacaterina, F., Cricenti, L., Campagnola, B., Nasto, F., Assenza, C., Morelli, D., Cordella, F., Lapresa, M., Zollo, L., Sterzi, S., & Bravi, M. (2022). Robotic-assisted hand therapy with gloreha sinfonia for the improvement of hand function after pediatric stroke: A case report. Applied Sciences, 12(9), 4206. https://doi.org/10.3390/app12094206
  • Cesareo, A., Beretta, E., Biffi, E., Strazzer, S., & Reni, G. (2016). A comparative study among constraint, robot-aided and standard therapies in upper limb rehabilitation of children with acquired brain injury [Paper presentation]. In XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. https://doi.org/10.1007/978-3-319-32703-7_130
  • Chen, Y.-P., & Howard, A. M. (2016). Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Developmental Neurorehabilitation, 19(1), 64–71. https://doi.org/10.3109/17518423.2014.899648
  • Cimolin, V., Germiniasi, C., Galli, M., Condoluci, C., Beretta, E., & Piccinini, L. (2019). Robot-Assisted upper limb training for hemiplegic children with cerebral palsy. Journal of Developmental and Physical Disabilities, 31(1), 89–101. https://doi.org/10.1007/s10882-018-9632-y
  • Cimolin, V., Vagnini, A., Germiniasi, C., Galli, M., Pacifici, I., Negri, L., Beretta, E., & Piccinini, L. (2016). The Armeo spring as training tool to improve upper limb functionality in hemiplegic cerebral palsy: A pilot study [Paper presentation]. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI) [Paper presentation]. https://doi.org/10.1109/RTSI.2016.7740602
  • Čolović, H., Dimitrijević, L., Đurić, V., & Janković, S. (2020). Upper limb robotic neurorehabilitation after pediatric stroke. Srpski Arhiv za Celokupno Lekarstvo, 148(5-6), 368–371.
  • Constantino, C., May, E., Flanagan, A., Altiok, H., & Harris, G. (2022). Myoelectric elbow-wrist-hand orthosis for an adolescent with hemiparesis: A case report. JPO Journal of Prosthetics and Orthotics, 34(2), e99–e102. https://doi.org/10.1097/JPO.0000000000000330
  • Coratti, G., Carmela Pera, M., Montes, J., Scoto, M., Pasternak, A., Bovis, F., Sframeli, M., D'Amico, A., Pane, M., Albamonte, E., Antonaci, L., Lia Frongia, A., Mizzoni, I., Sansone, V. A., Russo, M., Bruno, C., Baranello, G., Messina, S., Dunaway Young, S., … Mercuri, E. (2022). Revised upper limb module in type II and III spinal muscular atrophy: 24-month changes. Neuromuscular Disorders: NMD, 32(1), 36–42. https://doi.org/10.1016/j.nmd.2021.10.009
  • Corrigan, M. C., & Foulds, R. A. (2020). Evaluation of admittance control as an alternative to passive arm supports to increase upper extremity function for individuals with Duchenne muscular dystrophy. Muscle & Nerve, 61(6), 692–701. https://doi.org/10.1002/mus.26848
  • Cruz, A., Callaway, L., Randall, M., & Ryan, M. (2021). Mobile arm supports in Duchenne muscular dystrophy: A pilot study of user experience and outcomes. Disability and Rehabilitation. Assistive Technology, 16(8), 880–889. https://doi.org/10.1080/17483107.2020.1749892
  • Cruz Rivera, S., Liu, X., Chan, A.-W., Denniston, A. K., Calvert, M. J., & The SPIRIT-AI and CONSORT-AI Working Group. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nature Medicine, 26(9), 1351–1363. https://doi.org/10.1038/s41591-020-1037-7
  • Dewar, R., Love, S., & Johnston, L. M. (2015). Exercise interventions improve postural control in children with cerebral palsy: A systematic review. Developmental Medicine and Child Neurology, 57(6), 504–520. https://doi.org/10.1111/dmcn.12660
  • Dittli, J., Vasileiou, C., Asanovski, H., Lieber, J., Lin, J. B., Meyer-Heim, A., Van Hedel, H. J. A., Gassert, R., & Lambercy, O. (2022). Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton. IEEE. International Conference on Rehabilitation Robotics: [Proceedings], 2022, 1–6. https://doi.org/10.1109/ICORR55369.2022.9896550
  • Duret, C., Grosmaire, A.-G., & Krebs, H. I. (2019). Robot-assisted therapy in upper extremity hemiparesis: Overview of an evidence-based approach. Frontiers in Neurology, 10, 412. https://doi.org/10.3389/fneur.2019.00412
  • El-Shamy, S. M. (2018). Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. American Journal of Physical Medicine & Rehabilitation, 97(3), 164–169. https://doi.org/10.1097/PHM.0000000000000852
  • Estilow, T., Glanzman, A. M., Powers, K., Moll, A., Flickinger, J., Medne, L., Tennekoon, G., & Yum, S. W. (2018). Use of the Wilmington robotic exoskeleton to improve upper extremity function in patients with Duchenne muscular dystrophy. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 72(2), 7202345010p1–7202345010p5. 7202345010p7202345011 https://doi.org/10.5014/ajot.2018.022939
  • Everts, R., Pavlovic, J., Kaufmann, F., Uhlenberg, B., Seidel, U., Nedeltchev, K., Perrig, W., & Steinlin, M. (2008). Cognitive functioning, behavior, and quality of life after stroke in childhood. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 14(4), 323–338. https://doi.org/10.1080/09297040701792383
  • NIH. (n.d). National Library of Medicine, National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/mesh/?term=exoskeleton%2Bdevices
  • Falzarano, V., Marini, F., Morasso, P., & Zenzeri, J. (2019). Devices and protocols for upper limb robot-assisted rehabilitation of children with neuromotor disorders. Applied Sciences, 9(13), 2689. https://doi.org/10.3390/app9132689
  • Fasoli, S. E., Fragala-Pinkham, M., Hughes, R., Krebs, H. I., Hogan, N., & Stein, J. (2008). Robotic Therapy and Botulinum Toxin Type A. American Journal of Physical Medicine & Rehabilitation, 87(12), 1022–1026. 10.1097/PHM.0b013e31817fb346
  • Fasoli, S. E., Fragala-Pinkham, M., Hughes, R., Hogan, N., Krebs, H. I., & Stein, J. (2008). Upper limb robotic therapy for children with hemiplegia. American Journal of Physical Medicine & Rehabilitation, 87(11), 929–936. https://doi.org/10.1097/PHM.0b013e31818a6aa4
  • Fluet, G. G., Qiu, Q., Kelly, D., Parikh, H. D., Ramirez, D., Saleh, S., & Adamovich, S. V. (2010). Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Developmental Neurorehabilitation, 13(5), 335–345. https://doi.org/10.3109/17518423.2010.501362
  • Fluet, G. G., Qiu, Q., Saleh, S., Ramirez, D., Adamovich, S., Kelly, D., & Parikh, H. (2009). Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with upper extremity hemiplegia. In 2009 Virtual Rehabilitation International Conference, https://doi.org/10.1186/1743-0003-6-40
  • Frascarelli, F., Masia, L., Di Rosa, G., Cappa, P., Petrarca, M., Castelli, E., & Krebs, H. (2009). The impact of robotic rehabilitation in children with acquired or congenital movement disorders. European Journal of Physical and Rehabilitation Medicine, 45(1), 135–141.
  • Gandolla, M., Dalla Gasperina, S., Longatelli, V., Manti, A., Aquilante, L., D’Angelo, M. G., Biffi, E., Diella, E., Molteni, F., Rossini, M., Gföhler, M., Puchinger, M., Bocciolone, M., Braghin, F., & Pedrocchi, A. (2021). An assistive upper-limb exoskeleton controlled by multi-modal interfaces for severely impaired patients: Development and experimental assessment. Robotics and Autonomous Systems, 143, 103822. https://doi.org/10.1016/j.robot.2021.103822
  • Garavaglia, L., Pagliano, E., Arnoldi, M. T., LoMauro, A., Zanin, R., Baranello, G., … Pittaccio, S. (2017). Two single cases treated by a new pseudoelastic upper-limb orthosis for secondary dystonia of the young [Paper presentation]. In 2017 International Conference on Rehabilitation Robotics (ICORR). https://doi.org/10.1109/ICORR.2017.8009422
  • Gaudet, G., Raison, M., & Achiche, S. (2021). Current trends and challenges in pediatric access to sensorless and sensor-based upper limb exoskeletons. Sensors, 21(10), 3561. https://doi.org/10.3390/s21103561
  • Gilliaux, M., Renders, A., Dispa, D., Holvoet, D., Sapin, J., Dehez, B., Detrembleur, C., Lejeune, T. M., & Stoquart, G. (2015). Upper limb robot-assisted therapy in cerebral palsy: A single-blind randomized controlled trial. Neurorehabilitation and Neural Repair, 29(2), 183–192. https://doi.org/10.1177/1545968314541172
  • Graser, J. V., Bastiaenen, C. H. G., Gut, A., Keller, U., & van Hedel, H. J. A. (2021). Contextual interference in children with brain lesions: A pilot study investigating blocked vs. random practice order of an upper limb robotic exergame. Pilot and Feasibility Studies, 7, 135. https://doi.org/10.1186/s40814-021-00866-4
  • Graser, J. V., Prospero, L., Liesch, M., Keller, U., & van Hedel, H. J. (2022). Test–retest reliability of upper limb robotic exoskeleton assessments in children and youths with brain lesions. Scientific Reports, 12(1), 16685. https://doi.org/10.1038/s41598-022-20588-8
  • Gunn, M., Shank, T. M., Eppes, M., Hossain, J., & Rahman, T. (2016). User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 24(12), 1277–1283. https://doi.org/10.1109/TNSRE.2015.2492860
  • Hartman, A., Elkhadrawi, M., McKendry, S., Akcakaya, M., & Bendixen, R. M. (2022). Towards remote monitoring of dynamic arm supports for individuals with Duchenne muscular dystrophy using 3D accelerometry. Expert Systems with Applications, 205, 117712. https://doi.org/10.1016/j.eswa.2022.117712
  • Haumont, T., Rahman, T., Sample, W., King, M. M., Church, C., Henley, J., & Jayakumar, S. (2011). Wilmington robotic exoskeleton: A novel device to maintain arm improvement in muscular disease. Journal of Pediatric Orthopedics, 31(5), e44–e49. https://doi.org/10.1097/BPO.0b013e31821f50b5
  • Higgins, J. P. T., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., Savovic, J., Schulz, K. F., Weeks, L., & Sterne, J. A. C. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 343(oct18 2), d5928–d5928. https://doi.org/10.1136/bmj.d5928
  • Hospodar, C. M., Sabet, A., Logan, S. W., Catena, M. A., & Galloway, J. C. (2021). Exploratory analysis of a developmentally progressive modified ride-on car intervention for young children with Down syndrome. Disability and Rehabilitation. Assistive Technology, 16(7), 749–757. https://doi.org/10.1080/17483107.2019.1710773
  • James, S., Ziviani, J., & Boyd, R. (2014). A systematic review of activities of daily living measures for children and adolescents with cerebral palsy. Developmental Medicine and Child Neurology, 56(3), 233–244. https://doi.org/10.1111/dmcn.12226
  • Jansen, M., Burgers, J., Jannink, M., & de Groot, I. (2015). Upper limb training with dynamic arm support in boys with Duchenne muscular dystrophy: A feasibility study. https://doi.org/10.4172/2329-9096.1000256
  • Janssen, M. M., Bergsma, A., Geurts, A. C., & De Groot, I. J. (2014). Patterns of decline in upper limb function of boys and men with DMD: An international survey. Journal of Neurology, 261(7), 1269–1288. https://doi.org/10.1007/s00415-014-7316-9
  • Janssen, M. M., Horstik, J., Klap, P., & de Groot, I. J. (2021). Feasibility and effectiveness of a novel dynamic arm support in persons with spinal muscular atrophy and duchenne muscular dystrophy. Journal of Neuroengineering and Rehabilitation, 18(1), 84. https://doi.org/10.1186/s12984-021-00868-6
  • Keklicek, H., Uygur, F., & Yakut, Y. (2015). Effects of taping the hand in children with cerebral palsy. Journal of Hand Therapy: Official Journal of the American Society of Hand Therapists, 28(1), 27–32; quiz 33. https://doi.org/10.1016/j.jht.2014.09.007
  • Keller, J. W., & Van Hedel, H. J. (2017). Weight-supported training of the upper extremity in children with cerebral palsy: A motor learning study. Journal of Neuroengineering and Rehabilitation, 14(1), 87. https://doi.org/10.1186/s12984-017-0293-3
  • Koo, B., Montes, J., Gamarnik, V., Yeager, K., Marra, J., Dunaway, S., … Konofagou, E. (2009). Design and evaluation of a hybrid passive and active gravity neutral orthosis (GNO) [Paper presentation]. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/IEMBS.2009.5332578
  • Kooren, P. N., Dunning, A. G., Janssen, M. M. H. P., Lobo-Prat, J., Koopman, B. F. J. M., Paalman, M. I., de Groot, I. J. M., & Herder, J. L. (2015). Design and pilot validation of A-gear: A novel wearable dynamic arm support. Journal of Neuroengineering and Rehabilitation, 12(1), 111. https://doi.org/10.1186/s12984-015-0106-5
  • Krebs, H. I., Fasoli, S. E., Dipietro, L., Fragala-Pinkham, M., Hughes, R., Stein, J., & Hogan, N. (2012). Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabilitation and Neural Repair, 26(7), 855–860. https://doi.org/10.1177/1545968311433427
  • Kumar, A., & Phillips, M. F. (2013). Use of powered mobile arm supports by people with neuromuscular conditions. Journal of Rehabilitation Research and Development, 50(1), 61–70. https://doi.org/10.1682/jrrd.2012.03.0047
  • Kuo, F.-L., Lee, H.-C., Hsiao, H.-Y., & Lin, J.-C. (2020). Robotic-assisted hand therapy for improvement of hand function in children with cerebral palsy: A case series study. European Journal of Physical and Rehabilitation Medicine, 56(2), 237–242. https://doi.org/10.23736/S1973-9087.20.05926-2
  • Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair, 22(2), 111–121. https://doi.org/10.1177/1545968307305457
  • Ladenheim, B., Altenburger, P., Cardinal, R., Monterroso, L., Dierks, T., Mast, J., & Krebs, H. I. (2013). The effect of random or sequential presentation of targets during robot-assisted therapy on children. NeuroRehabilitation, 33(1), 25–31. https://doi.org/10.3233/NRE-130924
  • Lahoud, D., Teng, C. H., Nusem, E., Burns, J., Wrigley, C., & Cheng, T. L. (2021). Content analysis of child user and carer perspectives of ankle–foot orthoses. Prosthetics and Orthotics International, 45(1), 12–19. https://doi.org/10.1177/0309364620952906
  • Li, B., Baraldi Cunha, A., Kriner, S. M., & Lobo, M. A. (2022). Playskin AirTM: A pediatric pneumatic exoskeleton for children with upper extremity disabilities [Paper presentation]. In Proceedings of the 2022 ACM International Symposium on Wearable Computers. https://doi.org/10.1145/3544794.3560294
  • Li, B., Cao, H., Greenspan, B., & Lobo, M. A. (2022). Development and evaluation of pneumatic actuators for pediatric upper extremity rehabilitation devices. The Journal of the Textile Institute, 113(7), 1372–1379. https://doi.org/10.1080/00405000.2021.1929704
  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1–e34. https://doi.org/10.1371/journal.pmed.1000100
  • Lieber, J., Dittli, J., Lambercy, O., Gassert, R., Meyer-Heim, A., & van Hedel, H. J. (2022). Clinical utility of a pediatric hand exoskeleton: Identifying users, practicability, and acceptance, and recommendations for design improvement. Journal of Neuroengineering and Rehabilitation, 19(1), 17. https://doi.org/10.1186/s12984-022-00994-9
  • Lobo, M. A., Hall, M. L., Greenspan, B., Rohloff, P., Prosser, L. A., & Smith, B. A. (2019). Wearables for pediatric rehabilitation: How to optimally design and use products to meet the needs of users. Physical Therapy, 99(6), 647–657. https://doi.org/10.1093/ptj/pzz024
  • Lobo, M. A., Koshy, J., Hall, M. L., Erol, O., Cao, H., Buckley, J. M., Galloway, J. C., & Higginson, J. (2016). Playskin Lift: Development and initial testing of an exoskeletal garment to assist upper extremity mobility and function. Physical Therapy, 96(3), 390–399. https://doi.org/10.2522/ptj.20140540
  • Lobo, M. A., Li, B. (2020). Feasibility and effectiveness of a soft exoskeleton for pediatric rehabilitation. In International Symposium on Wearable Robotics. https://doi.org/10.1007/978-3-030-69547-7_53
  • Lobo, M. A., Moeyaert, M., Cunha, A. B., & Babik, I. (2017). Single-case design, analysis, and quality assessment for intervention research. Journal of Neurologic Physical Therapy: JNPT, 41(3), 187–197. https://doi.org/10.1097/NPT.0000000000000187
  • López, N. M., de Diego, N., Hernández, R., Pérez, E., Ensinck, G., & Valentinuzzi, M. E. (2014). Customized device for pediatric upper limb rehabilitation in obstetric brachial palsy. American Journal of Physical Medicine & Rehabilitation, 93(3), 263–266. https://doi.org/10.1097/PHM.0b013e3182a51c95
  • Madaan, P., Gopinathan, N. R., Saini, L., Chauhan, A., Singh, H., Kumar, N., & Sahu, J. K. (2021). Evaluation of a customized 3D printed ORGAN-hand orthotic device for unilateral cerebral palsy: A pilot study. Indian Journal of Pediatrics, 88(9), 912–914. https://doi.org/10.1007/s12098-021-03859-6
  • Marini, F., Hughes, C. M., Squeri, V., Doglio, L., Moretti, P., Morasso, P., & Masia, L. (2017). Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation. Robotics and Autonomous Systems, 91, 169–178. https://doi.org/10.1016/j.robot.2017.01.006
  • Marini, F., Squeri, V., Cappello, L., Morasso, P., Riva, A., Doglio, L., & Masia, L. (2015). Adaptive wrist robot training in pediatric rehabilitation [Paper presentation]. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). https://doi.org/10.1109/ICORR.2015.7281195
  • Masia, L., Frascarelli, F., Morasso, P., Di Rosa, G., Petrarca, M., Castelli, E., & Cappa, P. (2011). Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy. Journal of Neuroengineering and Rehabilitation, 8(1), 28. https://doi.org/10.1186/1743-0003-8-28
  • Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Al Mahmud, A. (2019). Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabilitation and Assistive Technologies, 6(2), e12010. https://doi.org/10.2196/12010
  • Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. https://doi.org/10.1682/jrrd.2010.10.0210
  • Orlando, J. M., Li, B., Bodt, B., & Lobo, M. A. (2023). Users’ perceptions about lower extremity orthotic devices: A systematic review. Archives of Physical Medicine and Rehabilitation, 104(4), 645–655. https://doi.org/10.1016/j.apmr.2022.10.010
  • Oskoui, M., Coutinho, F., Dykeman, J., Jette, N., & Pringsheim, T. (2013). An update on the prevalence of cerebral palsy: A systematic review and meta‐analysis. Developmental Medicine and Child Neurology, 55(6), 509–519. https://doi.org/10.1111/dmcn.12080
  • Oña, E., Cano-de La Cuerda, R., Sánchez-Herrera, P., Balaguer, C., & Jardón, A. (2018). A review of robotics in neurorehabilitation: Towards an automated process for upper limb. Journal of Healthcare Engineering, 2018, 9758939. https://doi.org/10.1155/2018/9758939
  • Palsbo, S. E., & Hood-Szivek, P. (2012). Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: A nonrandomized phase 2 device trial. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 66(6), 682–690. https://doi.org/10.5014/ajot.2012.004556
  • Parette, H. P., & Brotherson, M. J. (2004). Family-centered and culturally responsive assistive technology decision making. Infants & Young Children, 17(4), 355–367. https://doi.org/10.1097/00001163-200410000-00008
  • Peri, E., Biffi, E., Maghini, C., Iammarrone, F. S., Gagliardi, C., Germiniasi, C., Pedrocchi, A., Turconi, A. C., & Reni, G. (2014). A new quantitative performance parameter for monitoring robotics rehabilitation treatment: Technical guidelines. ICTs for Improving Patients Rehabilitation Research Techniques, https://doi.org/10.1007/978-3-662-48645-0_5
  • Peri, E., Biffi, E., Maghini, C., Servodio Iammarrone, F., Gagliardi, C., Germiniasi, C., Pedrocchi, A., Turconi, A. C., & Reni, G. (2016). Quantitative evaluation of performance during robot-assisted treatment. Methods of Information in Medicine, 55(1), 84–88. https://doi.org/10.3414/ME14-01-0126
  • Picelli, A., La Marchina, E., Vangelista, A., Chemello, E., Modenese, A., Gandolfi, M., Ciceri, E. F. M., Bucci, A., Zoccatelli, G., Saltuari, L., Waldner, A., Baricich, A., Santamato, A., & Smania, N. (2017). Effects of robot-assisted training for the unaffected arm in patients with hemiparetic cerebral palsy: A proof-of-concept pilot study. Behavioural Neurology, 2017, 8349242. https://doi.org/10.1155/2017/8349242
  • Plasschaert, V. F., Vriezekolk, J. E., Aarts, P. B., Geurts, A. C., & Van den Ende, C. H. (2019). Interventions to improve upper limb function for children with bilateral cerebral palsy: A systematic review. Developmental Medicine and Child Neurology, 61(8), 899–907. https://doi.org/10.1111/dmcn.14141
  • Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., & van Wijck, F. (2014). Interventions for improving upper limb function after stroke. The Cochrane Database of Systematic Reviews, 2014(11), CD010820. https://doi.org/10.1002/14651858.CD010820.pub2
  • Porritt, K., Gomersall, J., & Lockwood, C. (2014). JBI's systematic reviews: Study selection and critical appraisal. The American Journal of Nursing, 114(6), 47–52. https://doi.org/10.1097/01.NAJ.0000450430.97383.64
  • Preston, N., Weightman, A., Gallagher, J., Holt, R., Clarke, M., Mon-Williams, M., Levesley, M., & Bhakta, B. (2016). Feasibility of school-based computer-assisted robotic gaming technology for upper limb rehabilitation of children with cerebral palsy. Disability and Rehabilitation. Assistive Technology, 11(4), 281–288. https://doi.org/10.3109/17483107.2014.932020
  • Preston, N., Weightman, A., Gallagher, J., Levesley, M., Mon-Williams, M., Clarke, M., & O'Connor, R. J. (2016). A pilot single-blind multicentre randomized controlled trial to evaluate the potential benefits of computer-assisted arm rehabilitation gaming technology on the arm function of children with spastic cerebral palsy. Clinical Rehabilitation, 30(10), 1004–1015. https://doi.org/10.1177/0269215515604699
  • Qiu, Q., Adamovich, S., Saleh, S., Lafond, I., Merians, A. S., & Fluet, G. G. (2011). A comparison of motor adaptations to robotically facilitated upper extremity task practice demonstrated by children with cerebral palsy and adults with stroke [Paper presentation]. In 2011 IEEE International Conference on Rehabilitation Robotics. https://doi.org/10.1109/ICORR.2011.5975431
  • Qiu, Q., Fluet, G. G., Saleh, S., Ramirez, D., & Adamovich, S. (2010). Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy [Paper presentation]. In Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC). https://doi.org/10.1109/NEBC.2010.5458203
  • Qiu, Q., Ramirez, D. A., Saleh, S., & Adamovich, S. (2009). NJIT-RAVR system for upper extremity rehabilitation in children with hemiplegia [Paper presentation]. In 2009 IEEE 35th Annual Northeast Bioengineering Conference. https://doi.org/10.1109/NEBC.2009.4967703
  • Qiu, Q., Ramirez, D. A., Saleh, S., Fluet, G. G., Parikh, H. D., Kelly, D., & Adamovich, S. V. (2009). The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: A feasibility study. Journal of Neuroengineering and Rehabilitation, 6(1), 40. https://doi.org/10.1186/1743-0003-6-40
  • Rahman, T., Galloway, C., Kokkoni, E., & Lobo, M. (2014). Development and testing of a modular upper extremity exoskeleton for infants. BIODEVICES, 1, 316–319. https://doi.org/10.5220/0004938003160319
  • Rahman, T., Sample, W., Jayakumar, S., King, M. M., Wee, J. Y., Seliktar, R., Alexander, M., Scavina, M., & Clark, A. (2006). Passive exoskeletons for assisting limb movement. Journal of Rehabilitation Research and Development, 43(5), 583–590. https://doi.org/10.1682/jrrd.2005.04.0070
  • Rahman, T., Sample, W., Seliktar, R., Alexander, M., & Scavina, M. (2000). A body-powered functional upper limb orthosis. Journal of Rehabilitation Research and Development, 37(6), 675–680.
  • Rahman, T., Sample, W., Seliktar, R., Scavina, M. T., Clark, A. L., Moran, K., & Alexander, M. A. (2007). Design and testing of a functional arm orthosis in patients with neuromuscular diseases. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 15(2), 244–251. https://doi.org/10.1109/TNSRE.2007.897026
  • Rehmat, N., Zuo, J., Meng, W., Liu, Q., Xie, S. Q., & Liang, H. (2018). Upper limb rehabilitation using robotic exoskeleton systems: A systematic review. International Journal of Intelligent Robotics and Applications, 2(3), 283–295. https://doi.org/10.1007/s41315-018-0064-8
  • Roberts, H., Shierk, A., Clegg, N. J., Baldwin, D., Smith, L., Yeatts, P., & Delgado, M. R. (2021). Constraint induced movement therapy camp for children with hemiplegic cerebral palsy augmented by use of an exoskeleton to play games in virtual reality. Physical & Occupational Therapy in Pediatrics, 41(2), 150–165. https://doi.org/10.1080/01942638.2020.1812790
  • Rojo, A., Del Riego, S., Sánchez, C., Urendes, E. J., García-Carmona, R., Lerma-Lara, S., & Raya, R. (2022, July 11–15, 2022). POWERUP: A 3D-printed exoskeleton and serious games for the rehabilitation of children with motor disabilities [Paper presentation]. In Computers Helping People with Special Needs: 18th International Conference, ICCHP-AAATE 2022, Lecco, Italy. Proceedings Part II. https://doi.org/10.1007/978-3-031-08645-8_27
  • Schardt, C., Adams, M. B., Owens, T., Keitz, S., & Fontelo, P. (2007). Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Medical Informatics and Decision Making, 7(1), 1–6. https://doi.org/10.1186/1472-6947-7-16
  • Shank, T., Eppes, M., Hossain, J., Gunn, M., & Rahman, T. (2017). Outcome measures with COPM of children using a wilmington robotic exoskeleton. The Open Journal of Occupational Therapy, 5(1), 3. https://doi.org/10.15453/2168-6408.1262
  • Shank, T. M., & Rahman, T. (2021). Home use of an upper extremity exoskeleton in children with SMA: A pilot study. The Open Journal of Occupational Therapy, 9(2), 1–14. https://doi.org/10.15453/2168-6408.1762
  • Shank, T. M., Wee, J., Ty, J., & Rahman, T. (2017). Quantitative measures with WREX usage. IEEE. International Conference on Rehabilitation Robotics: [Proceedings], 2017, 1375–1380. https://doi.org/10.1109/ICORR.2017.8009440
  • Sherief, A. A. A., Abdelfattah, A. S., & Elfakharany, M. S. (2021). Electrodiagnostic effect of Armeo® Robotic Therapy versus Conventional Therapy in Erb’s Palsy Children. Annals of Clinical and Analytical Medicine, 12, S35–S40. https://doi.org/10.4328/ACAM.20324
  • Shimizu, Y., Kadone, H., Kubota, S., Ueno, T., Sankai, Y., Hada, Y., & Yamazaki, M. (2019). Voluntary elbow extension-flexion using single joint hybrid assistive limb (HAL) for patients of spastic cerebral palsy: Two cases report. Frontiers in Neurology, 10, 2. https://doi.org/10.3389/fneur.2019.00002
  • Singh, R. M., Chatterji, S., & Kumar, A. (2012). Trends and challenges in EMG based control scheme of exoskeleton robots-a review. International Journal of Scientific and Engineering Research. 3(8), 933–940.
  • Sivan, M., O'Connor, R. J., Makower, S., Levesley, M., & Bhakta, B. (2011). Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. Journal of Rehabilitation Medicine, 43(3), 181–189. https://doi.org/10.2340/16501977-0674
  • Tong, L. Z., Ong, H. T., Tan, J. X., Lin, J., Burdet, E., Ge, S. S., & Teo, C. L. (2015). Pediatric rehabilitation with the reachMAN's modular handle [Paper presentation]. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2015.7319254
  • Turconi, A. C., Biffi, E., Maghini, C., Peri, E., & Gagliardi, C. (2015). Can new technologies improve upper limb performance in grown-up diplegic children? European Journal of Physical and Rehabilitation Medicine, 52(5), 672–681.
  • Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E., Meskers, C. G., & Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke: A systematic review. Neurorehabilitation and Neural Repair, 31(2), 107–121. https://doi.org/10.1177/1545968316666957
  • Veneman, J. F., Ekkelenkamp, R., Kruidhof, R., van der Helm, F. C., & van der Kooij, H. (2006). A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. The International Journal of Robotics Research, 25(3), 261–281. https://doi.org/10.1177/0278364906063829
  • Wallace, B. C., Small, K., Brodley, C. E., Lau, J., & Trikalinos, T. A. (2012). Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr [Paper presentation]. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. https://doi.org/10.1145/2110363.2110464
  • Weightman, A., Preston, N., Levesley, M., Holt, R., Mon-Williams, M., Clarke, M., Cozens, A. J., & Bhakta, B. (2011). Home based computer assisted upper limb exercise for young children with cerebral palsy: A feasibility study investigating impact on motor control and functional outcome. Journal of Rehabilitation Medicine, 43(4), 359–363. https://doi.org/10.2340/16501977-0679
  • Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64, 120–136. https://doi.org/10.1016/j.robot.2014.09.032
  • Zambianchi, F., Bazzan, G., Marcovigi, A., Pavesi, M., Illuminati, A., Ensini, A., & Catani, F. (2021). Joint line is restored in robotic-arm-assisted total knee arthroplasty performed with a tibia-based functional alignment. Archives of Orthopaedic and Trauma Surgery, 141(12), 2175–2184. https://doi.org/10.1007/s00402-021-04039-z
  • Zhang, M., Davies, T. C., & Xie, S. (2013). Effectiveness of robot-assisted therapy on ankle rehabilitation–A systematic review. Journal of NeuroEngineering and Rehabilitation, 10(1), 30. https://doi.org/10.1186/1743-0003-10-30
  • Zupan, M., Ashby, M. F., & Fleck, N. A. (2002). Actuator classification and selection—The development of a database. Advanced Engineering Materials, 4(12), 933–940. https://doi.org/10.1002/adem.200290009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.