255
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Comprehensive Review on Stochastic Optimal Power Flow Problems and Solution Methodologies

ORCID Icon, &

References

  • A. Akrami, M. Doostizadeh, and F. Aminifar, “Power system flexibility: An overview of emergence to evolution,” J. Mod. Power Syst. Clean Energy., Vol. 7, no. 5, pp. 987–1007, 2019. DOI: 10.1007/s40565-019-0527-4
  • International Energy Agency, Renewables 2021. Analysis and Forecast to 2026. Paris: OECD, 2021.
  • S. Sharma, and Y. R. Sood, “Microgrids: A review of status, technologies, software tools, and issues in Indian power market,” IETE Tech. Rev., Vol. 39, no. 2, pp. 411–32, 2022. DOI: 10.1080/02564602.2020.1850367
  • M. R. AlRashidi, and M. E. El-Hawary, “Applications of computational intelligence techniques for solving the revived optimal power flow problem,” Electric Power Syst. Res., Vol. 79, no. 4, pp. 694–702, 2009. DOI: 10.1016/j.epsr.2008.10.004
  • S. Sharma, Y. R. Sood, N. K. Sharma, M. Bajaj, H. M. Zawbaa, R. A. Turky, and S. Kamel, “Modeling and sensitivity analysis of grid-connected hybrid green microgrid system,” Ain Shams Eng. J., Vol. 13, no. 4, pp. 1–14, 2022. DOI: 10.1016/j.asej.2021.101679
  • P. Wei, and Y. Liu, “The integration of wind-solar-hydropower generation in enabling economic robust dispatch,” Math. Probl. Eng., Vol. 2019, pp. 1–12, 2019.
  • M. Singh, and S. Chauhan, “A hybrid-extreme learning machine based ensemble method for online dynamic security assessment of power systems,” Electric Power Syst. Res., Vol. 214, no. 108923, pp. 1–9, 2023.
  • S. Y. Abujarad, M. W. Mustafa, and J. J. Jamian, “Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review,” Renew. Sustain. Energy Rev., Vol. 70, pp. 215–23, 2017. DOI: 10.1016/j.rser.2016.11.246
  • S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: A bibliographic survey I: Formulations and deterministic methods,” Energy Syst., Vol. 3, no. 3, pp. 221–58, 2012. DOI: 10.1007/s12667-012-0056-y
  • K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi, “Metaheuristic research: A comprehensive survey,” Artif. Intell. Rev., Vol. 52, no. 4, pp. 2191–233, 2019. DOI: 10.1007/s10462-017-9605-z
  • S. Kumar, S. Sharma, Y. R. Sood, S. Upadhyay, and V. Kumar, “A review on different parametric aspects and sizing methodologies of hybrid renewable energy system,” J. Inst. Eng. (India) Ser. B, Vol. 103, no. 4, pp. 1345–54, 2022. DOI: 10.1007/s40031-022-00738-2
  • A. M. Shaheen, R. A. El-Sehiemy, H. M. Hasanien, and A. R. Ginidi, “An improved heap optimization algorithm for efficient energy management based optimal power flow model,” Energy (Oxf.), Vol. 250, no. 123795, pp. 1–18, 2022.
  • M. Olofsson, G. Andersson, and L. Soder, “Linear programming based optimal power flow using second order sensitivities,” IEEE Trans. Power Syst., Vol. 10, no. 3, pp. 1691–7, 1995. DOI: 10.1109/59.466472
  • R. S. Ferreira, C. L. T. Borges, and M. V. F. Pereira, “A flexible mixed-integer linear programming approach to the AC optimal power flow in distribution systems,” IEEE Trans. Power Syst., Vol. 29, no. 5, pp. 2447–59, 2014. DOI: 10.1109/TPWRS.2014.2304539
  • H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama, “Large scale hydrothermal optimal power flow problems based on interior point nonlinear programming,” IEEE Trans. Power Syst., Vol. 15, no. 1, pp. 396–403, 2000. DOI: 10.1109/59.852150
  • A. S. Alayande, J. T. Olowolaju, and I. K. Okakwu, “Solving optimal generation dispatch problem in power networks through PSO and lambda iteration techniques,” Niger. J. Technol., Vol. 38, no. 1, pp. 165–76, 2019. DOI: 10.4314/njt.v38i1.21
  • E. J. Oliveira, L. W. Oliveira, J. L. R. Pereira, L. M. Honório, I. C. Silva Junior, and A. L. M. Marcato, “An optimal power flow based on safety barrier interior point method,” Int. J. Electr. Power Energy Syst., Vol. 64, pp. 977–85, 2015. DOI: 10.1016/j.ijepes.2014.08.015
  • S. K. Jadhav, “Optimal power flow in wind farm microgrid using dynamic programming,” in International Conference on Emerging Trends and Innovations in Engineering and Technological Research (ICETIETR), 2018.
  • C. N. Lu, S. S. Chen, and C. M. Ing, “The incorporation of HVDC equations in optimal power flow methods using sequential quadratic programming techniques,” IEEE Trans. Power Syst., Vol. 3, no. 3, pp. 1005–11, 1988. DOI: 10.1109/59.14554
  • Q. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “Solving corrective risk-based security-constrained optimal power flow with Lagrangian relaxation and Benders decomposition,” Int. J. Electr. Power Energy Syst., Vol. 75, pp. 255–64, 2016. DOI: 10.1016/j.ijepes.2015.09.001
  • A. Shaheen, A. Ginidi, R. El-Sehiemy, A. Elsayed, E. Elattar, and H. T. Dorrah, “Developed gorilla troops technique for optimal power flow problem in electrical power systems,” Mathematics, Vol. 10, no. 10, pp. 1–29, 2022. DOI: 10.3390/math10101636
  • M. Kaur, and N. Narang, “An integrated optimization technique for optimal power flow solution,” Soft Comput., Vol. 24, no. 14, pp. 10865–82, 2020. DOI: 10.1007/s00500-019-04590-3
  • M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, “Modified grasshopper optimization framework for optimal power flow solution,” Electr. Eng., Vol. 101, no. 1, pp. 121–48, 2019. DOI: 10.1007/s00202-019-00762-4
  • G. Chen, J. Qian, Z. Zhang, and S. Li, “Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem,” Appl. Soft Comput., Vol. 92, no. 106321, pp. 1–19, 2020.
  • P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga, “Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms,” Soft Comput., Vol. 24, no. 4, pp. 2999–3023, 2020. DOI: 10.1007/s00500-019-04077-1
  • A. A. El-Fergany, and H. M. Hasanien, “Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis,” Neural Comput. Appl., Vol. 32, no. 9, pp. 5267–83, 2020. DOI: 10.1007/s00521-019-04029-8
  • A. Maheshwari, Y. R. Sood, S. Jaiswal, S. Sharma, and J. Kaur, “Ant lion optimization based OPF solution incorporating wind turbines and carbon emissions,” Innovations in Power and Advanced Computing Technologies (i-PACT), 2021.
  • S. Duman, U. Güvenç, Y. Sonmez, and Y. € Orükeren, “Optimal power flow using gravitational search algorithm,” Energy Convers Manag., Vol. 59, pp. 86–95, 2012. DOI: 10.1016/j.enconman.2012.02.024
  • F. Daqaq, M. Ouassaid, and R. Ellaia, “A new meta-heuristic programming for multi-objective optimal power flow,” Electr. Eng., Vol. 103, no. 2, pp. 1217–37, 2021. DOI: 10.1007/s00202-020-01173-6
  • H. Diab, M. Abdelsalam, and A. Abdelbary, “A multi-objective optimal power flow control of electrical transmission networks using intelligent meta-heuristic optimization techniques,” Sustainability, Vol. 13, no. 9, pp. 1–25, 2021. DOI: 10.3390/su13094979
  • S. Khunkitti, A. Siritaratiwat, and S. Premrudeepreechacharn, “Multi-objective optimal power flow problems based on slime mould algorithm,” Sustainability, Vol. 13, no. 13, pp. 1–21, 2021. DOI: 10.3390/su13137448
  • A. Saha, P. Das, and A. K. Chakraborty, “Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow,” Eng. Sci. Technol. Int. J., Vol. 20, no. 6, pp. 1540–52, 2017.
  • H. Buch, I. N. Trivedi, and P. Jangir, “Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation,” Cogent Eng., Vol. 4, no. 1, pp. 1–22, 2017. DOI: 10.1080/23311916.2017.1286731
  • T. Sousa, J. Soares, Z. A. Vale, H. Morais, and P. Faria, “Simulated annealing metaheuristic to solve the optimal power flow,” IEEE Power and Energy Society General Meeting, 2011.
  • B. Bhattacharyya, and N. Karmakar, “Optimal reactive power management problem: A solution using evolutionary algorithms,” IETE Tech. Rev., Vol. 37, no. 5, pp. 540–8, 2020. DOI: 10.1080/02564602.2019.1675541
  • H. Pulluri, R. Naresh, and V. Sharma, “Application of stud krill herd algorithm for solution of optimal power flow problems: OPF using SKH,” Int. Trans. Electr. Energy Syst., Vol. 27, no. 6, pp. 1–18, 2017. DOI: 10.1002/etep.2316
  • S. Duman, “Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones,” Neural Comput. Appl., Vol. 28, no. 11, pp. 3571–85, 2017. DOI: 10.1007/s00521-016-2265-0
  • A. Sharma, H. Sharma, A. Bhargava, N. Sharma, and J. C. Bansal, “Optimal power flow analysis using Lévy flight spider monkey optimization algorithm,” Int. J. Artif. Intell. Soft Comput., Vol. 5, no. 4, pp. 320–52, 2016.
  • P. Shankya, A. Parwaz, and V. Kumar, “Artificial bee colony algorithm for solving optimal power flow problem,” Int. J. Comput. Appl., Vol. 178, no. 49, pp. 8–10, 2019.
  • H. R. E. H. Bouchekara, M. A. Abido, A. E. Chaib, and R. Mehasni, “Optimal power flow using the league championship algorithm: A case study of the Algerian power system,” Energy Convers. Manag., Vol. 87, pp. 58–70, 2014. DOI: 10.1016/j.enconman.2014.06.088
  • B. Venkateswara Rao, and G. V. Nagesh Kumar, “Optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller,” Int. J. Electr. Power Energy Syst., Vol. 68, pp. 81–8, 2015. DOI: 10.1016/j.ijepes.2014.12.057
  • J. Hazra, and A. K. Sinha, “A multi-objective optimal power flow using particle swarm optimization,” Eur. Trans. Electr. Power, Vol. 21, no. 1, pp. 1028–45, 2011. DOI: 10.1002/etep.494
  • S. Sahu, A. K. Barisal, and A. Kaudi, “Multi-objective optimal power flow with DG placement using TLBO and MIPSO: A comparative study,” Energy Procedia, Vol. 117, pp. 236–43, 2017. DOI: 10.1016/j.egypro.2017.05.127
  • A. Khan, H. Hizam, N. I. Abdul-Wahab, and M. L. Othman, “Solution of optimal power flow using non-dominated sorting multi objective based hybrid firefly and particle swarm optimization algorithm,” Energies, Vol. 13, no. 16, pp. 1–24, 2020. DOI: 10.3390/en13164265
  • M. Ghasemi, S. Ghavidel, S. Rahmani, A. Roosta, and H. Falah, “A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions,” Eng. Appl. Artif. Intell., Vol. 29, pp. 54–69, 2014. DOI: 10.1016/j.engappai.2013.11.003
  • M. H. Nadimi-Shahraki, A. Fatahi, H. Zamani, S. Mirjalili, and D. Oliva, “Hybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problem,” Electronics, Vol. 11, no. 5, pp. 1–35, 831, 2022. DOI: 10.3390/electronics11050831
  • J. Radosavljević, D. Klimenta, M. Jevtić, and N. Arsić, “Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm,” Electr. Power Compon. Syst., Vol. 43, no. 17, pp. 1958–70, 2015. DOI: 10.1080/15325008.2015.1061620
  • J. Carpentier, “Optimal power flows: Uses, methods and developments,” IFAC Proc., Vol. 18, no. 7, pp. 11–21, 1985. DOI: 10.1016/S1474-6670(17)60410-5
  • E. E. Elattar, A. M. Shaheen, A. M. Elsayed, and R. A. El-Sehiemy, “Optimal power flow with emerged technologies of voltage source converter stations in meshed power systems,” IEEE. Access., Vol. 8, pp. 166963–79, 2020. DOI: 10.1109/ACCESS.2020.3022919
  • S. Gill, I. Kockar, and G. W. Ault, “Dynamic optimal power flow for active distribution networks,” IEEE Trans. Power Syst., Vol. 29, no. 1, pp. 121–31, 2014. DOI: 10.1109/TPWRS.2013.2279263
  • T. Niknam, M. R. Narimani, and M. Jabbari, “Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing,” Int. Trans. Electr. Energy Syst., Vol. 23, no. 7, pp. 975–1001, 2013. DOI: 10.1002/etep.1633
  • F. Capitanescu, J. L. Martinez Ramos, P. Panciatici, D. Kirschen, A. Marano Marcolini, L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges, and future trends in security constrained optimal power flow,” Electric Power Syst. Res., Vol. 81, no. 8, pp. 1731–41, 2011. DOI: 10.1016/j.epsr.2011.04.003
  • U. Guvenc, S. Duman, H. T. Kahraman, S. Aras, and M. Katı, “Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources,” Appl. Soft Comput., Vol. 108, no. 107421, pp. 1–35, 2021.
  • N. Amjady, H. Fatemi, and H. Zareipour, “Solution of optimal power flow subject to security constraints by a new improved bacterial foraging method,” IEEE Trans. Power Syst., Vol. 27, no. 3, pp. 1311–23, 2012. DOI: 10.1109/TPWRS.2011.2175455
  • E. Grover-Silva, M. Heleno, S. Mashayekh, G. Cardoso, R. Girard, and G. Kariniotakis, “A stochastic optimal power flow for scheduling flexible resources in microgrids operation,” Appl. Energy, Vol. 229, pp. 201–8, 2018. DOI: 10.1016/j.apenergy.2018.07.114
  • M. Perninge, and C. Hamon, “A stochastic optimal power flow problem with stability constraints-part II: The optimization problem,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1849–57, 2013. DOI: 10.1109/TPWRS.2012.2226761
  • C. S. Saunders, “Point estimate method addressing correlated wind power for probabilistic optimal power flow,” IEEE Trans. Power Syst., Vol. 29, no. 3, pp. 1045–54, 2014. DOI: 10.1109/TPWRS.2013.2288701
  • G. Verbic, and C. A. Canizares, “Probabilistic optimal power flow in electricity markets based on a two-point estimate method,” IEEE Trans. Power Syst., Vol. 21, no. 4, pp. 1883–93, 2006. DOI: 10.1109/TPWRS.2006.881146
  • B. Zou, and Q. Xiao, “Solving probabilistic optimal power flow problem using quasi-Monte Carlo method and ninth-order polynomial normal transformation,” IEEE Trans. Power Syst., Vol. 29, no. 1, pp. 300–6, 2014. DOI: 10.1109/TPWRS.2013.2278986
  • H. Ahmadi, H. Ghasemi, A. M. Haddadi, and H. Lesani, “Two approaches to transient stability-constrained optimal power flow,” Int. J. Electr. Power Energy Syst., Vol. 47, pp. 181–92, 2013. DOI: 10.1016/j.ijepes.2012.11.004
  • A. Pizano-Martinez, C. R. Fuerte-Esquivel, and D. Ruiz-Vega, “A new practical approach to transient stability-constrained optimal power flow,” IEEE Trans. Power Syst., Vol. 26, no. 3, pp. 1686–96, 2011. DOI: 10.1109/TPWRS.2010.2095045
  • A. S. Nair, S. Abhyankar, S. Peles, and P. Ranganathan, “Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids,” Electric Power Syst. Res., Vol. 202, no. 107594, pp. 1–9, 2022.
  • M. Ou, Y. Xue, and X.-P. Zhang, “Iterative DC optimal power flow considering transmission network loss,” Electr. Power Compon. Syst., Vol. 44, no. 9, pp. 955–65, 2016. DOI: 10.1080/15325008.2016.1147104
  • J. Rimez, and R. Belmans, “A combined AC/DC optimal power flow algorithm for meshed AC and DC networks linked by VSC converters,” Int. Trans. Electr. Energy Syst., Vol. 25, no. 10, pp. 2024–35, 2015. DOI: 10.1002/etep.1943
  • R. R. Souza, A. R. Balbo, A. C. P. Martins, E. M. Soler, E. C. Baptista, D. N. Sousa, and L. Nepomuceno, “A gradient-based approach for solving the stochastic optimal power flow problem with wind power generation,” Electric Power Syst. Res., Vol. 209, no. 108038, pp. 1–17, 2022.
  • S. Ida Evangeline, and P. Rathika, “Wind farm incorporated optimal power flow solutions through multi-objective horse herd optimization with a novel constraint handling technique,” Expert Syst. Appl., Vol. 194, no. 116544, pp. 1–21, 2022.
  • T. H. B. Huy, T. P. Nguyen, N. Mohd Nor, I. Elamvazuthi, T. Ibrahim, and D. N. Vo, “Performance improvement of multi-objective optimal power flow-based renewable energy sources using intelligent algorithm,” IEEE. Access., Vol. 10, pp. 48379–404, 2022. DOI: 10.1109/ACCESS.2022.3170547
  • S. Mouassa, A. Althobaiti, F. Jurado, and S. S. M. Ghoneim, “Novel design of slim mould optimizer for the solution of optimal power flow problems incorporating intermittent sources: A case study of Algerian electricity grid,” IEEE. Access., Vol. 10, pp. 22646–61, 2022. DOI: 10.1109/ACCESS.2022.3152557
  • M. H. Sulaiman, and Z. Mustaffa, “An application of teaching-learning-based optimization for solving the optimal power flow problem with stochastic wind and solar power generators,” SSRN Electron. J., Vol. 10, pp. 1–13, 2022.
  • A. K. Khamees, A. Y. Abdelaziz, M. R. Eskaros, A. El-Shahat, and M. A. Attia, “Optimal power flow solution of wind-integrated power system using novel metaheuristic method,” Energies, Vol. 14, no. 19, pp. 1–19, 2021. DOI: 10.3390/en14196117
  • P. P. Biswas, P. N. Suganthan, B. Y. Qu, and G. A. J. Amaratunga, “Multi-objective economic-environmental power dispatch with stochastic wind-solar-small hydro power,” Energy (Oxf.), Vol. 150, pp. 1039–57, 2018. DOI: 10.1016/j.energy.2018.03.002
  • M. H. Sulaiman, and Z. Mustaffa, “Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer,” Control Eng. Pract., Vol. 106, no. 104672, pp. 1–20, 2021.
  • A. Maheshwari, and Y. R. Sood, “Solution approach for optimal power flow considering wind turbine and environmental emissions,” Wind Eng., Vol. 46, no. 2, pp. 480–502, 2022. DOI: 10.1177/0309524X211035152
  • M. Farhat, S. Kamel, A. M. Atallah, and B. Khan, “Optimal power flow solution based on jellyfish search optimization considering uncertainty of renewable energy sources,” IEEE. Access., Vol. 9, pp. 100911–33, 2021. DOI: 10.1109/ACCESS.2021.3097006
  • M. S. Syed, S. V. Chintalapudi, and S. Sirigiri, “Optimal power flow solution in the presence of renewable energy sources,” Iran. J. Sci. Technol. Trans. Electr. Eng., Vol. 45, no. 1, pp. 61–79, 2021. DOI: 10.1007/s40998-020-00339-z
  • S. Duman, J. Li, and L. Wu, “AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm,” IET Renew. Power Gener., Vol. 15, no. 2, pp. 278–96, 2021. DOI: 10.1049/rpg2.12023
  • A. R. Thorat, I. Korachgaon, and P. D. Bamane, “Application of an improved GABC algorithm for optimal power flow problem incorporating renewable energy sources,” J. Inst. Eng. (India) Ser. B, Vol. 102, no. 2, pp. 179–91, 2021. DOI: 10.1007/s40031-020-00521-1
  • M. H. Sulaiman, Z. Mustaffa, A. J. Mohamad, M. M. Saari, and M. R. Mohamed, “Optimal power flow with stochastic solar power using barnacles mating optimizer,” Int. Trans. Electr. Energy Syst., Vol. 31, no. 5, pp. 1–21, 2021. DOI: 10.1002/2050-7038.12858
  • M. A. Hossain, K. M. Sallam, S. S. Elsayed, R. K. Chakrabortty, and M. J. Ryan. “Optimal Power Flow considering intermittent solar and wind generation using multi-operator differential evolution algorithm,” Preprints, 2021.
  • J. Sarda, K. Pandya, and K. Y. Lee, “Dynamic optimal power flow with cross entropy covariance matrix adaption evolutionary strategy for systems with electric vehicles and renewable generators,” Int. J. Energy Res., Vol. 45, no. 7, pp. 10869–81, 2021. DOI: 10.1002/er.6571
  • J. Sarda, K. Pandya, and K. Y. Lee, “Hybrid cross entropy-cuckoo search algorithm for solving optimal power flow with renewable generators and controllable loads,” Optim. Control Appl. Methods, Vol. oca.2759, pp. 10869–81, 2021.
  • M. Riaz, A. Hanif, S. J. Hussain, M. I. Memon, M. U. Ali, and A. Zafar, “An optimization-based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy,” Appl. Sci., Vol. 11, no. 15, pp. 1–27, 2021. DOI: 10.3390/app11156883
  • S. Ida Evangeline, and P. Rathika, “Real-time optimal power flow solution for wind farm integrated power system using evolutionary programming algorithm,” Int. J. Environ. Sci. Technol., Vol. 18, no. 7, pp. 1893–910, 2021. DOI: 10.1007/s13762-020-02926-3
  • E. Kaymaz, S. Duman, and U. Guvenc, “Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm,” Neural Comput. Appl., Vol. 33, no. 12, pp. 6775–804, 2021. DOI: 10.1007/s00521-020-05455-9
  • M. H. Hassan, S. Kamel, A. Selim, T. Khurshaid, and J. L. Domínguez-García, “A modified Rao-2 algorithm for optimal power flow incorporating renewable energy sources,” Mathematics, Vol. 9, no. 13, pp. 1–22, 2021. DOI: 10.3390/math9131532
  • S. Pandya, P. Jangir, and I. N. Trivedi, “Multi-objective moth flame optimizer: A fundamental visions for wind power integrated optimal power flow with FACTS devices,” Smart Sci., Vol. 10, no. 2, pp. 118–41, 2022. DOI: 10.1080/23080477.2021.1964693
  • P. P. Biswas, P. Arora, R. Mallipeddi, P. N. Suganthan, and B. K. Panigrahi, “Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network,” Neural Comput. Appl., Vol. 33, no. 12, pp. 6753–74, 2021. DOI: 10.1007/s00521-020-05453-x
  • S. Li, W. Gong, L. Wang, X. Yan, and C. Hu, “Optimal power flow by means of improved adaptive differential evolution,” Energy (Oxf.), Vol. 198, no. 117314, pp. 1–13, 2020.
  • K. Dasgupta, P. K. Roy, and V. Mukherjee, “Power flow based hydro-thermal-wind scheduling of hybrid power system using sine cosine algorithm,” Electric Power Syst. Res., Vol. 178, no. 106018, pp. 1–17, 2020.
  • A. Panda, U. Mishra, M.-L. Tseng, and M. H. Ali, “Hybrid power systems with emission minimization: Multi-objective optimal operation,” J. Clean. Prod., Vol. 268, no. 121418, pp. 1–18, 2020.
  • A. Abdollahi, A. Ghadimi, M. Miveh, F. Mohammadi, and F. Jurado, “Optimal Power Flow incorporating FACTS devices and stochastic wind power generation using Krill Herd Algorithm,” Electronics. (Basel), Vol. 9, no. 6, pp. 1–18, 2020.
  • K. Nusair, and F. Alasali, “Optimal power flow management system for a power network with stochastic renewable energy resources using golden ratio optimization method,” Energies, Vol. 13, no. 14, pp. 1–46, 2020. DOI: 10.3390/en13143671
  • I. U. Khan, N. Javaid, K. A. A. Gamage, C. J. Taylor, S. Baig, and X. Ma, “Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources,” IEEE. Access., Vol. 8, pp. 148622–43, 2020. DOI: 10.1109/ACCESS.2020.3015473
  • R. Ma, X. Li, W. Gao, P. Lu, and T. Wang, “Random-fuzzy chance-constrained programming optimal power flow of wind integrated power considering voltage stability,” IEEE. Access., Vol. 8, pp. 217957–66, 2020. DOI: 10.1109/ACCESS.2020.3040382
  • S. Albatran, S. Harasis, M. Ialomoush, Y. Alsmadi, and M. Awawdeh, “Realistic optimal power flow of a wind-connected power system with enhanced wind speed model,” IEEE. Access., Vol. 8, pp. 176973–85, 2020. DOI: 10.1109/ACCESS.2020.3027065
  • S. Duman, S. Rivera, J. Li, and L. Wu, “Optimal power flow of power systems with controllable wind-photovoltaic energy systems via differential evolutionary particle swarm optimization,” Int. Trans. Electr. Energy Syst., Vol. 30, no. 4, pp. 1–28, 2020. DOI: 10.1002/2050-7038.12270
  • S. Duman, J. Li, L. Wu, and U. Guvenc, “Optimal power flow with stochastic wind power and FACTS devices: A modified hybrid PSOGSA with chaotic maps approach,” Neural Comput. Appl., Vol. 32, no. 12, pp. 8463–92, 2020. DOI: 10.1007/s00521-019-04338-y
  • M. A. Ilyas, G. Abbas, T. Alquthami, M. Awais, and M. B. Rasheed, “Multi-objective optimal power flow with integration of renewable energy sources using fuzzy membership function,” IEEE. Access., Vol. 8, pp. 143185–200, 2020. DOI: 10.1109/ACCESS.2020.3014046
  • T. Samakpong, W. Ongsakul, and N. Madhu Manjiparambil, “Optimal power flow incorporating renewable uncertainty related opportunity costs,” Comput. Intell., Vol. 38, no. 3, pp. 1057–1082, 2020.
  • E. E. Elattar, and S. K. ElSayed, “Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement,” Energy (Oxf.), Vol. 178, pp. 598–609, 2019. DOI: 10.1016/j.energy.2019.04.159
  • C. Shilaja, and T. Arunprasath, “Optimal power flow using Moth Swarm Algorithm with Gravitational Search Algorithm considering wind power,” Future Gener. Comput. Syst., Vol. 98, pp. 708–15, 2019. DOI: 10.1016/j.future.2018.12.046
  • G. Sun, S. Chen, Z. Wei, and S. Chen, “Multi-period integrated natural gas and electric power system probabilistic optimal power flow incorporating power-to-gas units,” J. Mod. Power Syst. Clean Energy, Vol. 5, no. 3, pp. 412–23, 2017. DOI: 10.1007/s40565-017-0276-1
  • S. R. Salkuti, “Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system,” Int. J. Green Energy, Vol. 16, no. 15, pp. 1547–61, 2019. DOI: 10.1080/15435075.2019.1677234
  • J. Luo, L. Shi, and Y. Ni, “A solution of optimal power flow incorporating wind generation and power grid uncertainties,” IEEE. Access., Vol. 6, pp. 19681–90, 2018. DOI: 10.1109/ACCESS.2018.2823982
  • A. Attarha, N. Amjady, and A. J. Conejo, “Adaptive robust AC optimal power flow considering load and wind power uncertainties,” Int. J. Electr. Power Energy Syst., Vol. 96, pp. 132–42, 2018. DOI: 10.1016/j.ijepes.2017.09.037
  • P. P. Biswas, P. N. Suganthan, and G. A. J. Amaratunga, “Optimal power flow solutions incorporating stochastic wind and solar power,” Energy Convers. Manag., Vol. 148, pp. 1194–207, 2017. DOI: 10.1016/j.enconman.2017.06.071
  • R. Kathiravan, and R. P. Kumudini Devi, “Optimal power flow model incorporating wind, solar, and bundled solar-thermal power in the restructured Indian power system,” Int. J. Green Energy, Vol. 14, no. 11, pp. 934–50, 2017. DOI: 10.1080/15435075.2017.1339045
  • S. S. Reddy, “Optimal scheduling of thermal-wind-solar power system with storage,” Renew. Energy, Vol. 101, pp. 1357–68, 2017. DOI: 10.1016/j.renene.2016.10.022
  • A. Panda, M. Tripathy, A. K. Barisal, and T. Prakash, “A modified bacteria foraging based optimal power flow framework for Hydro-Thermal-Wind generation system in the presence of STATCOM,” Energy (Oxf.), Vol. 124, pp. 720–40, 2017. DOI: 10.1016/j.energy.2017.02.090
  • K. Teeparthi, and D. M. Vinod Kumar, “Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators,” Eng. Sci. Technol. Int. J., Vol. 20, no. 2, pp. 411–26, 2017.
  • W. Bai, D. Lee, and K. Lee, “Stochastic dynamic AC optimal power flow based on a multivariate short-term wind power scenario forecasting model,” Energies, Vol. 10, no. 12, pp. 1–19, 2017.
  • S. Surender Reddy, and P. R. Bijwe, “Day-ahead and real time optimal power flow considering renewable energy resources,” Int. J. Electr. Power Energy Syst., Vol. 82, pp. 400–8, 2016. DOI: 10.1016/j.ijepes.2016.03.033
  • S. Shargh, B. Khorshid ghazani, B. Mohammadi-ivatloo, H. Seyedi, and M. Abapour, “Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties,” Renew. Energy, Vol. 94, pp. 10–21, 2016. DOI: 10.1016/j.renene.2016.02.064
  • C. Shilaja, and K. Ravi, “Optimal power flow considering intermittent wind power using particle swarm optimization,” Int. J. Renew. Energy Res., Vol. v6i2, pp. 1–6, 2016.
  • J. Cao, W. Du, and H. F. Wang, “Weather-based optimal power flow with wind farms integration,” IEEE Trans. Power Syst., Vol. 31, no. 4, pp. 3073–81, 2016. DOI: 10.1109/TPWRS.2015.2488662
  • R. Roy, and H. T. Jadhav, “Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm,” Int. J. Electr. Power Energy Syst., Vol. 64, pp. 562–78, 2015. DOI: 10.1016/j.ijepes.2014.07.010
  • R. Azizipanah-Abarghooee, T. Niknam, M. Malekpour, F. Bavafa, and M. Kaji, “Optimal power flow based TU/CHP/PV/WPP coordination in view of wind speed, solar irradiance and load correlations,” Energy Convers. Manag., Vol. 96, pp. 131–45, 2015. DOI: 10.1016/j.enconman.2014.12.070
  • X. Li, J. Cao, and D. Du, “Probabilistic optimal power flow for power systems considering wind uncertainty and load correlation,” Neurocomputing, Vol. 148, pp. 240–7, 2015. DOI: 10.1016/j.neucom.2013.09.066
  • A. Panda, and M. Tripathy, “Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm,” Int. J. Electr. Power Energy Syst., Vol. 54, pp. 306–14, 2014. DOI: 10.1016/j.ijepes.2013.07.018
  • Z. Ullah, S. Wang, J. Radosavljevic, and J. Lai, “A solution to the optimal power flow problem considering WT and PV generation,” IEEE. Access., Vol. 7, pp. 46763–72, 2019. DOI: 10.1109/ACCESS.2019.2909561
  • S. S. Reddy, “Optimal power flow with renewable energy resources including storage,” Electr. Eng., Vol. 99, no. 2, pp. 685–95, 2017. DOI: 10.1007/s00202-016-0402-5
  • K. Nagarajan, P. Ayalur Krishnamoorthy, A. Rajagopalan, and K. Padmanathan, “Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources,” Int. J. Energy Environ. Eng., Vol. 12, pp. 641–78, 2021.
  • A. Maheshwari, Y. R. Sood, and S. Jaiswal, “Flow direction algorithm-based optimal power flow analysis in the presence of stochastic renewable energy sources,” Electric Power Syst. Res., Vol. 216, no. 109087, pp. 1–18, 2023.
  • A. Maheshwari, Y. R. Sood, and S. Jaiswal, “Investigation of optimal power flow solution techniques considering stochastic renewable energy sources: Review and analysis,” Wind Eng., Vol. 47, no. 2, pp. 1–27, 2022.
  • A. K. Khamees, A. Y. Abdelaziz, M. R. Eskaros, M. A. Attia, and M. A. Sameh, “Optimal power flow with stochastic renewable energy using three mixture component distribution functions,” Sustainability, Vol. 15, no. 1, pp. 1–21, 2022. DOI: 10.3390/su15010334
  • R. K. Avvari, and V. Kumar, “A new hybrid evolutionary algorithm for multi-objective optimal power flow in an integrated WE, PV, and PEV power system,” Electric Power Syst. Res., Vol. 214, no. 108870, pp. 1–12, 2023.
  • M. H. Sulaiman, Z. Mustaffa, and M. I. Mohd Rashid, “An application of teaching–learning-based optimization for solving the optimal power flow problem with stochastic wind and solar power generators,” Results Control Optim., Vol. 10, no. 100187, pp. 1–13, 2023.
  • S. Duman, H. T. Kahraman, and M. Kati, “Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm,” Eng. Appl. Artif. Intell., Vol. 117, no. 105501, pp. 1–28, 2023.
  • S. B. Pandya, S. Ravichandran, P. Manoharan, P. Jangir, and H. H. Alhelou, “Multi-objective optimization framework for optimal power flow problem of hybrid power systems considering security constraints,” IEEE. Access., Vol. 10, pp. 103509–28, 2022. DOI: 10.1109/ACCESS.2022.3209996
  • M. A. M. Shaheen, et al., “Solution of probabilistic optimal power flow incorporating renewable energy uncertainty using a novel circle search algorithm,” Energies, Vol. 15, no. 21, pp. 1–19, 2022.
  • G. L. Johnson. Wind Energy Systems. Old Tappan, NJ: Prentice Hall, 1985.
  • S. Mathew. Wind Energy: Fundamentals, Resource Analysis and Economics, 2006 ed. Berlin, Germany: Springer, 2014.
  • M. Ellahi, G. Abbas, I. Khan, P. M. Koola, M. Nasir, A. Raza, and U. Farooq, “Recent approaches of forecasting and optimal economic dispatch to overcome intermittency of wind and photovoltaic (PV) systems: A review,” Energies, Vol. 12, no. 22, pp. 1–30, 2019. DOI: 10.3390/en12224392
  • P. Wais, “A review of Weibull functions in wind sector,” Renew. Sustain. Energy Rev., Vol. 70, pp. 1099–107, 2017. DOI: 10.1016/j.rser.2016.12.014
  • M. U. Afzaal, et al., “Probabilistic generation model of solar irradiance for grid connected photovoltaic systems using Weibull distribution,” Sustainability, Vol. 12, no. 6, pp. 1–17, 2020.
  • H. He, S. Huang, Y. Liu, and T. Zhang, “Robust model predictive control for energy management of isolated microgrids based on interval prediction,” Discrete Dyn. Nat. Soc., Vol. 2021, pp. 1–14, 2021.
  • V. Kumar, V. Sharma, Y. Arya, R. Naresh, and A. Singh, “Stochastic wind energy integrated multi source power system control via a novel model predictive controller based on Harris Hawks optimization,” Energy Sources Recovery Util. Environ. Eff., Vol. 44, no. 4, pp. 10694–719, 2022.
  • V. Kumar, V. Sharma, and R. Naresh, “HHO-based model predictive controller for combined voltage and frequency control problem including SMES,” IETE J. Res., 1–15, 2021.
  • S. Teleke, M. E. Baran, S. Bhattacharya, and A. Q. Huang, “Optimal control of battery energy storage for wind farm dispatching,” IEEE Trans. Energy Convers., Vol. 25, no. 3, pp. 787–94, 2010. DOI: 10.1109/TEC.2010.2041550
  • F. Fayaz, and G. L. Pahuja, “Optimal control of hybrid power system integrated with distributed generation and electric vehicle,” Distrib. Gener. Altern. Energy J., Vol. 38, no. 1, pp. 189–214, 2022.
  • H. Yuan, F. Li, Y. Wei, and J. Zhu, “Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP,” IEEE Trans. Smart Grid., Vol. 9, no. 1, pp. 438–48, 2018. DOI: 10.1109/TSG.2016.2594814
  • B. Wang, N. Tang, R. Bo, and F. Li, “Three-phase DLMP model based on linearized power flow for distribution with application to DER benefit studies,” Int. J. Electr. Power Energy Syst., Vol. 130, no. 106884, pp. 1–13, 2021.
  • E. DallAnese, K. Baker, and T. Summers, “Chance-constrained AC optimal power flow for distribution systems with renewables,” IEEE Trans. Power Syst., Vol. 32, no. 5, pp. 3427–38, 2017. DOI: 10.1109/TPWRS.2017.2656080
  • A. N. Abdalla, M. S. Nazir, Z. Tiezhu, M. Bajaj, P. Sanjeevikumar, and L. Yao, “Optimized economic operation of microgrid: Combined cooling and heating power and hybrid energy storage systems,” J. Energy Resour. Technol., Vol. 143, no. 7, pp. 1–9, 2021. DOI: 10.1115/1.4050971
  • S. Padmanaban, B. Khan, O. P. Mahela, H. H. Alhelou, and S. Rajkumar. Active Electrical Distribution Network: Issues, Solution Techniques, and Applications. Academic Press, 2022.
  • V. Kumar, R. Naresh, and V. Sharma, “Profit based unit commitment problem solution using metaheuristic optimization approach,” Int. J. Syst. Sci. Oper. Logist., Vol. 10, no. 1, pp. 1–24, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.