128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Substitution of Zn for Cu in Mg–Y–Zn alloys designed for fracturing ball

, , , , , , & show all
Pages 2976-2989 | Received 27 Mar 2023, Accepted 24 Jun 2023, Published online: 06 Jul 2023

References

  • Zhao XJ, Wang CJ, Wang QL, et al. A case of multi-stage fracturing horizontal well used in BZ oilfield in Bohai bay low-permeability oilfield development. J Geosci Environ Prot. 2020;08:147–154. doi:10.4236/gep.2020.87008
  • Liang X, Zhu JH, Shi XZ, et al. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling. Nat Gas Ind B. 2017;04:134–140. doi:10.1016/j.ngib.2017.07.017
  • Liao SM, Sang Y, Song Y, et al. Research and field tests of staged fracturing technology for casing deformation sections in horizontal shale gas wells. Nat Gas Ind B. 2018;05:16–21. doi:10.1016/j.ngib.2017.11.003
  • Pei XH, Wei SB, Shi BR, et al. Disintegrating fracturing ball used in ball injection sliding sleeve for staged fracturing. Pet Explor Dev. 2014;41:805–809. doi:10.1016/S1876-3804(14)60097-5
  • Tan W, Li TS, Li SZ, et al. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls. J Mater Sci Technol. 2021;94:22–31. doi:10.1016/j.jmst.2021.04.010
  • Zheng C, Liu YH, Wang HX, et al. Finite element analysis and experimental study on the deformation characteristics of an aluminium alloy fracturing ball. J Nat Gas Sci Eng. 2016;35:203–210. doi:10.1016/j.jngse.2016.08.037
  • Jamaloei BY. A review of plug-and-perforate, ball-and-seat, and single-entry pinpoint fracturing performance in the unconventional montney reservoir. J Pet Explor Prod. 2021;11:1155–1183. doi:10.1007/s13202-021-01085-6
  • Che JQ, Wang HX, Zhang YW, et al. Experimental study on the working performance of different milling tools for multistage fracturing ball seats. Pet Sci. 2020;17:1699–1716. doi:10.1007/s12182-020-00492-4
  • Esmaily M, Svensson JE, Fajardo S. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92–193. doi:10.1016/j.pmatsci.2017.04.011
  • Tanhaee Z, Mahmudi R. Microstructural characterisation and mechanical properties of the cast Gd-containing Mg−8Mg2Si in situ composites. Mater Sci Technol. 2023; 1–12. doi:10.1080/02670836.2023.2191096
  • Fang XY, Zhou C, Lin JB, et al. Research on deformation mechanism of AZ31 magnesium alloy during uniaxial compression. Mater Sci Technol. 2023; 1–11. doi:10.1080/02670836.2023.2200324
  • Zhang YZ, Wang XY, Kuang YF, et al. Enhanced mechanical properties and degradation rate of Mg-3Zn-1Y based alloy by Cu addition for degradable fracturing ball applications. Mater Lett. 2017;195:194–197. doi:10.1016/j.matlet.2017.02.024
  • Xi GQ, Luo Y, Zhang J, et al. Loading-direction dependence of interaction types between different twin variants in AZ31 alloy. Mater Sci Technol. 2023;39: 1490–1500.doi:10.1080/02670836.2023.2173434
  • Takagi K, Mayama T, Mine Y, et al. Extended ductility owing to Kink band formation and growth under tensile loading in single crystals of Mg-Zn-Y alloy with 18R-LPSO structure. J Alloys Compd. 2019;806:1384–1393. doi:10.1016/j.jallcom.2019.07.344
  • Ninomiya K, Itamoto K, Setoyama H, et al. Chemical interactions of solute atoms during L12 cluster formation in Mg–Zn–Gd alloys with long-period stacking ordered structure. J Alloys Compd. 2022;928:167101. doi:10.1016/j.jallcom.2022.167101
  • Xu SY, Liu CM, Wan YC, et al. Corrosion behaviour of Mg-Gd-Y-Zn-Ag alloy components with different sizes after cooling. Trans Nonferrous Met Soc China. 2021;31:1291–1302. doi:10.1016/S1003-6326(21)65578-4
  • Xi GQ, Zhao XH, Ma YL, et al. Comparative study on corrosion behavior and mechanism of As-cast Mg–Zn–Y and Mg–Zn–Gd alloys. A Acta Metall Sin (Engl Lett). 2023;36:310–322. doi:10.1007/s40195-022-01455-x
  • Xi GQ, Mou Y, Ma Y, et al. Effect of volume fraction of 18R-LPSO phase on corrosion resistance of Mg−Zn−Y alloys. Trans Nonferrous Met Soc China. 2023;33:454–466. doi:10.1016/S1003-6326(22)66119-3
  • Zhang Q, Liu WC, Wu GH, et al. Effect of Zn addition on the microstructure and mechanical properties of cast Mg–10Gd–3.5Er–xZn–0.5Zr alloys. Acta Metall Sin (Engl Lett). 2020;33:1507–1517. doi:10.1007/s40195-020-01106-z
  • Yu ZJ, Xu X, Du BT, et al. Precipitate characteristics and mechanical performance of cast Mg–6RE–1Zn–xCa–0.3Zr (x = 0 and 0.4 wt-%) alloys. Acta Metall Sin (Engl Lett). 2022;35:596–608. doi:10.1007/s40195-021-01269-3
  • Li JY, Wang FL, Zeng J, et al. Effect of the interspacing of intragranular lamellar LPSO phase on dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloys. Mater Charact. 2022;193:112326. doi:10.1016/j.matchar.2022.112326
  • Bi GL, Zhang NM, Jiang J, et al. Microstructure and yield phenomenon of an extruded Mg-Y-Cu alloy with LPSO phase. J Rare Earths. 2022;41: 454–461.doi:10.1016/j.jre.2022.01.011
  • Chang ZY, Deng QC, Lan Q, et al. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy prepared by rheo-die casting. Mater Sci Eng A. 2022;848:143287. doi:10.1016/j.msea.2022.143287
  • Xu LD, Ding SJ, Cai XC, et al. Unveiling initial oxidation behavior of Mg-Y-Zn long-period stacking ordered (LPSO) phase. Corros Sci. 2022;208:110624. doi:10.1016/j.corsci.2022.110624
  • Xin WJ, Briffod F, Shiraiwa T, et al. Mechanical properties and failure mechanisms of Mg-Zn-Y alloys with different extrusion ratio and LPSO volume fraction. J Magnes Alloys. 2022;10:2158–2172. doi:10.1016/j.jma.2022.02.004
  • Mayama T, Agnew SR, Hagihara K, et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys. Int J Plast. 2022;154:103294. doi:10.1016/j.ijplas.2022.103294
  • Peng ZZ, Shao XH, Liang ZM, et al. Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures. J Magnes Alloys. 2022;11:1754–1768. doi:10.1016/j.jma.2022.09.010
  • Zheng DF, Zhu QC, Zeng XQ, et al. Unveiling the strengthening effect of LPSO phase in a Mg-Y-Zn alloy. Mater Lett. 2022;311:131524. doi:10.1016/j.matlet.2021.131524
  • Xi GQ, Jin JD, Ma YL, et al. Interaction between {10-12} and {30-34} twin in magnesium alloy. J Mater Sci. 2022;57:15109–15120. doi:10.1007/s10853-022-07561-6
  • Wang JF, Gao SQ, Liu XY, et al. Enhanced mechanical properties and degradation rate of Mg–Ni–Y alloy by introducing LPSO phase for degradable fracturing ball applications. J Magnes Alloys. 2020;8:127–133. doi:10.1016/j.jma.2019.11.010
  • Zhong SY, Zhang DF, Chai SS, et al. Effect of Cu addition on the microstructure, mechanical properties and degradation rate of Mg-2Gd alloy. J Mater Res Technol. 2021;15:477–487. doi:10.1016/j.jmrt.2021.08.042
  • Li BJ, Sun JP, Xu BQ, et al. Corrosion behavior of Mg-5.7Gd-1.9Ag Mg alloy sheet. J Alloys Compd. 2022;915:165241. doi:10.1016/j.jallcom.2022.165241
  • Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J Alloys Compd. 2019;792:1162–1190. doi:10.1016/j.jallcom.2019.04.080
  • Wu SZ, Qiao XG, Qin SH, et al. Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ′phase. Mater Sci Eng A. 2022;831:142198. doi:10.1016/j.msea.2021.142198
  • Wang J, Li T, Li HX, et al. Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg–Gd–Y–Zr–Ni alloys for dissoluble fracturing tools. J Magnes Alloys. 2021;9:1632–1643. doi:10.1016/j.jma.2020.08.019
  • Niu HY, Deng KK, Nie KB, et al. Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications. J Alloys Compd. 2019;787:1290–1300. doi:10.1016/j.jallcom.2019.02.089
  • Niu HY, Deng KK, Nie KB, et al. Degradation behavior of Mg-4Zn-2Ni alloy with high strength and high degradation rate. Mater Chem Phys. 2020;249:123131. doi:10.1016/j.matchemphys.2020.123131
  • Zhang XM, Chen ZY, Luo HF, et al. Corrosion resistances of metallic materials in environments containing chloride ions: a review. Trans Nonferrous Met Soc China. 2022;32:377–410. doi:10.1016/S1003-6326(22)65802-3
  • Xie JS, Zhang JH, Zhang Z, et al. New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corros Sci. 2022;198:110163. doi:10.1016/j.corsci.2022.110163
  • Liu YH, Li HX, Zhang ZR, et al. Effect of Cu micro-alloying on the microstructure, mechanical and corrosion properties of Mg-Gd-Y-Zn based alloy applied as plugging tools. J Alloys Compd. 2023;939:168768. doi:10.1016/j.jallcom.2023.168768
  • Sun J, Du WB, Fu JJ, et al. A review on magnesium alloys for application of degradable fracturing tools. J Magnes Alloys. 2022;10:2649–2672. doi:10.1016/j.jma.2022.09.032
  • Yin SQ, Duan WC, Liu WH, et al. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys. Corros Sci. 2020;166. doi:10.1016/j.corsci.2019.108419
  • Ma XC, Jin SY, Wu RZ, et al. Corrosion behavior of Mg−Li alloys: a review. Trans Nonferrous Met Soc China. 2021;31:3228–3254. doi:10.1016/S1003-6326(21)65728-X
  • Jin XY, Ma XC, Wu RZ, et al. Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy. Int J Miner Metall Mater. 2022;29:1453–1463. doi:10.1007/s12613-021-2377-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.