96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructural evolution of Ag-0.20wt-%Mg-0.19wt-%Ni alloy in under-oxidized condition

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3006-3014 | Received 01 Feb 2023, Accepted 27 Jun 2023, Published online: 11 Jul 2023

References

  • Stott FH, Wood GC. Internal oxidation. Mater Sci Technol. 1988;4(12):1072–1078. doi:10.1179/mst.1988.4.12.1072
  • Wu CP, Yi DQ, Weng W, et al. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials. Trans Nonferrous Met Soc China. 2016;26(1):185–195. doi:10.1016/S1003-6326(16)64105-5
  • Wang J, Kang YQ, Wang C, et al. Resistance to arc erosion characteristics of CuO skeleton-reinforced Ag-CuO contact materials. J Alloy Compd. 2018;756:202–207. doi:10.1016/j.jallcom.2018.05.018
  • Chen S, Guan WM, Zhang KH, et al. Experiment and finite element method analysis mass erosion and transfer of Ag/La2NiO4-based electrical contacts during operation. Rare Met. 2013;32(1):93–99. doi:10.1007/s12598-013-0005-5
  • Kesim MT, Yu H, Sun Y, et al. Corrosion, oxidation, erosion and performance of Ag/W-based circuit breaker contacts: a review. Corros Sci. 2018;135:12–34. doi:10.1016/j.corsci.2018.02.010
  • Chen SY, Wang J, Yuan Z, et al. Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting. J Alloy Compd. 2021;860:158494. doi:10.1016/j.jallcom.2020.158494
  • Wu CP, Yi DQ, Li J, et al. Investigation on microstructure and performance of Ag/ZnO contact material. J Alloy Compd. 2008;457(1–2):565–570. doi:10.1016/j.jallcom.2007.03.099
  • Xu CH, Yi DQ, Jiang Y, et al. The kinetics and interface microstructure evolution in the internal oxidation of Ag-3at.%Sn alloy. Corros Sci. 2015;94:392–400. doi:10.1016/j.corsci.2015.02.020
  • Wang JB, Zhang Y, Yang MG, et al. Observation of arc discharging process of nanocomposite Ag-SnO2 and La-doped Ag-SnO2 contact with a high-speed camera. Mater Sci Eng B. 2006;131(1–3):230–234. doi:10.1016/j.mseb.2006.04.042
  • Kong JW, Shi QN, Wang JH, et al. Microstructure and properties of Ag-1.33%Mg-0.54%Ni alloy after severe plastic deformation and internal oxidation. Rare Metal Mater Eng. 2013;42(1):32–36. doi:10.1016/S1875-5372(13)60033-8
  • Ćosović V, Ćosović A, Talijan N, et al. Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method. J Alloy Compd. 2013;567:33–39. doi:10.1016/j.jallcom.2013.03.094
  • Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J Electrochem Soc. 1952;99(10):369–380. doi:10.1149/1.2779605
  • Stott FH, Wood GC, Whittle DP, et al. The transport of oxygen to the advancing internal oxide front during internal oxidation of nickel-base alloys at high temperature. Solid State Ionics. 1984;12:365–374. doi:10.1016/0167-2738(84)90166-8
  • Martinez-Villafane A, Stott FH, Chacon-Nava JG, et al. Enhanced oxygen diffusion along internal oxide-metal matrix interfaces in Ni-Al alloys during internal oxidation. Oxid Met. 2002;57(3/4):267–279. doi:10.1023/A:1014874202052
  • Kluthe C, Al-Kassab T, Barker J, et al. Segregation of hydrogen at internal AgMgO (metal/oxide)-interfaces as observed by small angle neutron scattering. Acta Mater. 2004;52(9):2701–2710. doi:10.1016/j.actamat.2004.02.018
  • Kluthe C, Al-Kassab T, Kirchheim R. Tomographic atom probe investigation of MgO precipitates in silver. Mater Sci Eng A. 2002;327(1):70–75. doi:10.1016/S0921-5093(01)01878-0
  • Ghaffari Y, Daub K, Newman RC, et al. Internal oxidation of Ag-xIn alloys at low homologous temperature. Corros Sci. 2020;175:108869. doi:10.1016/j.corsci.2020.108869
  • Charrin L, Becquart-Gallissian A, Combe A, et al. Reactivity at macroscopic, meso and microscopic scale in oxidized silver magnesium alloys. Scripta Mater. 2000;42(7):701–709. doi:10.1016/S1359-6462(99)00406-6
  • He JH, Sheng HW, Schilling PJ, et al. Amorphous structures in the immiscible Ag-Ni system. Phys Rev Lett. 2001;86(13):2826–2829. doi:10.1103/PhysRevLett.86.2826
  • Xu J, Herr U, Klassen T, et al. Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying. J Appl Phys. 1996;79(8):3935–3945. doi:10.1063/1.361820
  • Yang WY, Xie M, Chen YT, et al. Microstructure and phase analysis of Ag-Mg-Ni alloy. Chin J Rare Met. 2016;40(10):969–975. doi:10.13373/j.cnki.cjrm.xy15041602.
  • Charrin L, Becquart-Gallissian A, Combe A, et al. Key experimental parameters for internal-band formation: relationship between stress and oxidation kinetics in silver-magnesium alloys. Oxid Met. 2002;57(1):81–98. doi:10.1023/A:1013342712546
  • Prorok BC, Goretta KC, Park JH, et al. Oxygen diffusion and internal oxidation of Mg in Ag/1.12at.%Mg. Physica C. 2002;370(1):31–38. doi:10.1016/S0921-4534(01)00953-4
  • Zhou XL, Cao JC, Li JT, et al. Effect of severe plastic deformation on microstructures and properties of AgCuO composites. Adv Mater Res. 2011;177:49–53. doi:10.4028/www.scientific.net/AMR.177.49
  • Xu GL, Peng LJ, Huang GJ, et al. Microstructural evolution and properties of a Cu-Cr-Ag alloy during continuous manufacturing process. Rare Met. 2021;40:2213–2220. doi:10.1007/s12598-019-01238-x
  • Sakai Y, Yamada T, Suzuki T, et al. Contrast mechanisms in scanning ion microscope imaging for metals. Appl Phys Lett. 1998;73(5):611–613. doi:10.1063/1.121872
  • Xu CH, Yi DQ, Wu CP, et al. Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders. Mater Sci Eng A. 2012;538:202–209. doi:10.1016/j.msea.2012.01.031
  • Prorok BC, Park JH, Goretta KC, et al. Hardness and microstructure of internally oxidized silver alloys. IEEE T Appl Supercon. 2000;10(1):1178–1181. doi:10.1109/77.828444
  • Li ZY, Guo XT, Huang K, et al. Failure analysis of an Ag-Mg-Ni reed in a relay in aircraft applications. Eng Fail Anal. 2022;131:105807. doi:10.1016/j.engfailanal.2021.105807
  • Rapp RA. Kinetics, microstructures and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation. Corrosion. 1965;21(12):382–401. doi:10.5006/0010-9312-21.12.382
  • Ye DL, Hu JH. Handbook of thermodynamic data for practical inorganic materials. Beijing: Metallurgical Industry Press; 2002; Chinese.
  • Villain S, Cabané J, Knauth P. Solid state electrochemical characterisation of nanostructured silver prepared by cold-rolling and internal oxidation. Scripta Mater. 1998;38(6):1003–1007. doi:10.1016/S1359-6462(97)00556-3
  • Charrin L, Combe A, Cabane J. Oxide particles in Ag-Mg alloys formed by internal oxidation. Oxid Met. 1992;37(1):65–80. doi:10.1007/BF00665631
  • Semega BM, Charrin L, Combe A, et al. Evolution of the structure of precipitates during internal oxidation of Ag-0.4 at.% Mg alloy. Philos Mag A. 1992;66(6):1139–1148. doi:10.1080/01418619208248010
  • Sabioni ACS, Huntz AM, Millot F, et al. Self-diffusion in Cr2O3 III. chromium and oxygen grain-boundary diffusion in polycrystals. Philos Mag A. 1992;66(3):361–374. doi:10.1080/01418619208201562

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.