112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Ga and In on the properties of Zn-Al sacrificial anodes

, , , , , , & show all
Pages 3015-3024 | Received 04 Mar 2023, Accepted 26 Jun 2023, Published online: 06 Jul 2023

References

  • Ma J, Wen J, Li X, et al. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminium alloy sacrificial anodes. Rare Met. 2009;28:187–192. doi:10.1007/s12598-009-0037-z
  • Li X, Zhang D, Liu Z, et al. Materials science: share corrosion data. Nature. 2015;527:441–442. doi:10.1038/527441a
  • Wang F, Xu J, Xu Y, et al. A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete. Construction and Building Materials. 2020;246(20):118476-1–118476-10.
  • Li H, Xu ZB, Zeng J. Research and development of Al-Zn-In series sacrificial anode alloy. Foundry Technol. 2015;36(6):1337–1341. doi:10.16410/j.issn1000-8365.2015.06.002
  • Salinas DR, García SG, Bessone JB. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al-Zn. J Appl Electrochem. 1999;29(9):1063–1071. doi:10.1023/A:1003684219989
  • Zhao HY, Bian P, Ju DY. Electrochemical performance of magnesium alloy and its application on the sea water battery. J Environ Sci. 2009;21(S1):88–91. doi:10.1016/S1001-0742(09)60045-0
  • Keyvani A, Saremi M, Saeri MR. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium. Int J Mater Res. 2012;103(12):1533–1538. doi:10.3139/146.110817
  • Delfino F. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (galfan) alloy in neutral aerated sodium chloride solution. Electrochim Acta. 2009;54:1204–1209. doi:10.1016/j.electacta.2008.08.063
  • He SR, Jia SC, Ma ZF. Effects of rare earth on corro⁃sion resistance of Zn-based sacrificial anode materials. Met Funct Mater. 2011;18(5):36.
  • Cao ZY, Kong G, Che CS, et al. Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5wt.% NaCl solution. Appl Surf Sci. 2017;426:67–76. doi:10.1016/j.apsusc.2017.07.109
  • Shreir LL. Corrosion. Nature. 1972;236(5345), 283–283. doi:10.1038/236283a0
  • Zhang JP, Wang RC, Feng Y, et al. Effects of Hg and Ga on microstructures and electrochemical corrosion behaviors of Mg anode alloys. Trans Nonferrous Met Soc China. 2012;22(12):3039–3045. doi:10.1016/S1003-6326(11)61568-9
  • Diler E, Rouvellou B, Rioual S, et al. Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere. Corros Sci. 2014;87:111–117. doi:10.1016/j.corsci.2014.06.017
  • Wu PP, Song GL, Zhu YX, et al. Intelligentization of traditional sacrificial anode Zn by Mg-alloying for reinforcing steel. Corros Sci. 2022;194:109943. doi:10.1016/j.corsci.2021.109943
  • Muňoz AG, Saidman SB, Bessone JB. Corrosion of an Al-Zn-In alloy in chloride media. Corros Sci. 2002;44(10):2171–2182. doi:10.1016/S0010-938X(02)00042-2
  • Mohedano M, Blawert C, Yasakau KA, et al. Characterization and corrosion behavior of binary Mg-Ga alloys. Mater Charact. 2017;128:85–99. doi:10.1016/j.matchar.2017.03.040
  • Farooq Q. Evaluating the performance of zinc and aluminium sacrificial anodes in artificial seawater. Electrochim Acta. 2019;314:135–141. doi:10.1016/j.electacta.2019.05.067
  • Mondolfo LF. Effect of interfacial energies on heterogeneous nucleation. Mater Sci Technol. 1989;5(2):118–122. doi:10.1179/mst.1989.5.2.118
  • Long P, Li Q F. Study on corrosion mechanism of Zn-Al-Cd anodes in hot sea water. Corros Sci Prot Technol. 2007;19(4):235–238. doi:10.1016/S1872-2040(07)60059-0
  • Wang FP, Cao L, Liu ZB, et al. Protective performance of Zn-Al-Cd alloy sacrificial anode for 20# steel. Corros Sci Prot Technol. 2015;27(5):431–436. doi:10.11903/1002.6495.2014.371
  • Song XX, Zhang J, Yang DF, et al. Effects of microorganism on corrosion of Zn-Al-Cd sacrificial anode in natural seawater. J Mater Eng. 2013;356(1):58–63. doi:10.3969/j.issn.1001-4381.2013.01.012
  • EI Shayeb HA, Abd EI Wahab FM, et al. Effect of gallium ions on the electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions. Corros Sci. 2001;43(4):643–654. doi:10.1016/S0010-938X(00)00100-1
  • Luo J, Zhang Y, Zhong QD, et al. Influence of grain size on corrosion resistant of commonly used metals. Corros Prot. 2012;33(4):349–352.
  • Gancarz T, Mech K, Guspiel J, et al. Corrosion studies of Li, Na and Si doped Zn-Al alloy immersed in NaCl solutions. J Alloys Compd. 2018;767:1225–1237. doi:10.1016/j.jallcom.2018.07.109
  • Tong JB, Liang Y, Wei SC, et al. Microstructure and corrosion resistance of Zn-Al diffusion layer on 45 steel aided by mechanical energy. Materials (Basel). 2019;12(18):3032. doi:10.3390/ma12183032
  • Li W, Yan YG, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminium sacrificial anode. J Chin Soc Corros Prot. 2012;32(2):127–132. doi:10.1007/s11783-011-0280-z
  • Zhou HB, Liang M, Lv DS, et al. Electrochemical behaviors of zinc-indium alloy electroplating in alkaline solutions. Acta Metall Sinica. 2011;47(8):1055–1060. doi:10.3724/SP.J.1037.2011.00080
  • Cai M, Park SM. Oxidation of zinc in alkaline solutions studied by electrochemical impedance spectroscopy. Electrochem Soc. 1996;143(12):3895–3902. doi:10.1149/1.1837313

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.