303
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys

, ORCID Icon &
Pages 3351-3359 | Received 24 Mar 2023, Accepted 26 Jun 2023, Published online: 10 Jul 2023

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi:10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi:10.1016/j.msea.2003.10.257
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J Alloys Compd. 2022;903:163964. doi:10.1016/j.jallcom.2022.163964
  • Murugesan M, Yu JH, Jung KS, et al. Supervised machine learning approach for modeling hot deformation behavior of medium carbon steel. Steel Res Int. 2023;94(2):2200188. doi:10.1002/srin.202200188
  • Eleti RR, Bhattacharjee T, Shibata A, et al. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy. Acta Mater. 2019;171:132–145. doi:10.1016/j.actamat.2019.04.018
  • Qiao L, Zhu J. Constitutive modeling of hot deformation behavior of AlCrFeNi multi-component alloy. Vacuum. 2022;201:111059. doi:10.1016/j.vacuum.2022.111059.
  • Wan G, Ren Z, Guo Y, et al. The analysis of hot deformation behaviour of low-cost α+β Ti-6Al-0.4V-1.2Fe alloys. Mater Sci Technol. 2023. doi:10.1080/02670836.2023.2173897.
  • Jeong HT, Park HK, Park K, et al. High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2019;756:528–537. doi:10.1016/j.msea.2019.04.057
  • Jeong HY, Park J, Kim Y, et al. Processing parameters optimization in hot forging of AISI 4340 steel using instability map and reinforcement learning. J Mater Res Techn. 2023;23:1995–2009. doi:10.1016/j.jmrt.2023.01.106
  • Abdelghany AW, Jaskari M, Hamada AS, et al. Hot deformation behavior and constitutive modeling of a cost-effective Al8Cr12Mn25Ni20Fe35 high-entropy alloy. J Alloys Compd. 2022;928:167028. doi:10.1016/j.jallcom.2022.167028
  • Babu KA, Prithiv TS, Gupta A, et al. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method. Comput Mater Sci. 2021;195:110482. doi:10.1016/j.commatsci.2021.110482
  • Guerra APDB, Jorge AM Jr, Roche V, et al. Hot deformation behavior of a beta metastable TMZF alloy: microstructural and constitutive phenomenological analysis. Metals (Basel). 2021;11(11):1769. doi:10.3390/met11111769
  • Yao CG, Wang B, Yi DQ, et al. Artificial neural network modelling to predict hot deformation behaviour of as HIPed FGH4169 superalloy. Mater Sci Technol. 2014;30(10):1170–1176. doi:10.1179/1743284713Y.0000000411
  • Rodríguez-Calvillo P, Schneider J, Houbaert Y, et al. Effect of silicon on the hot flow behavior of ultra-low carbon austenite. Mater Perform Character. 2019;8(5):985–999. doi:10.1520/MPC20190026
  • Opěla P, Schindler I, Kawulok P, et al. Shallow and deep learning of an artificial neural network model describing a hot flow stress evolution: a comparative study. Mater Des. 2022;220:110880. doi:10.1016/j.matdes.2022.110880
  • Lin YC, Li J, Chen MS, et al. A deep belief network to predict the hot deformation behavior of a Ni-based superalloy. Neural Comp Appl. 2018;29(11):1015–1023. doi:10.1007/s00521-016-2635-7
  • Bhadeshia HKDH, Dimitriu RC, Forsik S, et al. Performance of neural networks in materials science. Mater Sci Technol. 2009;25(4):504–510. doi:10.1179/174328408X311053
  • Phaniraj MP, Lahiri AK. The applicability of neural network model to predict flow stress for carbon steels. J Mater Process Technol. 2003;141(2):219–227. doi:10.1016/S0924-0136(02)01123-8
  • Churyumov AY, Kazakova AA. Prediction of true stress at hot deformation of high manganese steel by artificial neural network modeling. Materials (Basel). 2023;16(3):1083. doi:10.3390/ma16031083
  • Chen DD, Lin YC, Wu F. A design framework for optimizing forming processing parameters based on matrix cellular automaton and neural network-based model predictive control methods. Appl Math Model. 2019;76:918–937. doi:10.1016/j.apm.2019.07.023
  • Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci. 2008;43(4):752–758. doi:10.1016/j.commatsci.2008.01.039
  • Menou E, Toda-Caraballo I, Rivera-Díaz-del PEJ, et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics. Mater Des. 2018;143:185–195. doi:10.1016/j.matdes.2018.01.045
  • Jain R, Jain A, Rahul MR, et al. Development of ultrahigh strength novel Co–Cr–Fe–Ni–Zr quasi-peritectic high entropy alloy by an integrated approach using experiment and simulation. Materialia. 2020;14:100896. doi:10.1016/j.mtla.2020.100896
  • Aranas C, Pasco J, McCarthy T. Material constitutive modelling of Fe-based, Ni-based and high-entropy alloys: development of Simu-Mat 1.0. MRS Commun. 2022;12(5):585–591. doi:10.1557/s43579-022-00201-9
  • Patnamsetty M, Somani MC, Ghosh S, et al. Processing map for controlling microstructure and unraveling various deformation mechanisms during hot working of CoCrFeMnNi high entropy alloy. Mater Sci Eng A. 2020;793:139840. doi:10.1016/j.msea.2020.139840
  • Wang X, Zhang Y, Ma X. High temperature deformation and dynamic recrystallization behavior of AlCrCuFeNi high entropy alloy. Mater Sci Eng A. 2020;778:139077. doi:10.1016/j.msea.2020.139077
  • Patnamsetty M, Ghosh S, Somani MC, et al. Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map. J Alloys Compd. 2022;914:165341. doi:10.1016/j.jallcom.2022.165341
  • Motallebi R, Savaedi Z, Mirzadeh H. Additive manufacturing – a review of hot deformation behavior and constitutive modeling of flow stress. Curr Opin Solid State Mater Sci. 2022;26(3):100992. doi:10.1016/j.cossms.2022.100992
  • Lachtermacher G, Fuller JD. Back propagation in time-series forecasting. J Forecast. 1995;14(4):381–393. doi:10.1002/for.3980140405
  • Hagan MT, Demuth HB, Beale M. Neural network design. Boston, MA, USA: PWS; 1997.
  • Patnamsetty M, Saastamoinen A, Somani MC, et al. Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy. Sci Technol Adv Mater. 2020;21(1):43–55. doi:10.1080/14686996.2020.1714476
  • Tong Y, Qiao JC, Yao YJMS. The constitutive model and threshold stress for characterizing the deformation mechanism of Al0.3CoCrFeNi high entropy alloy. Mater Sci Eng A. 2018;730:137–146. doi:10.1016/j.msea.2018.05.109
  • Zamani MR, Mirzadeh H, Malekan M, et al. Grain Growth in High-Entropy Alloys (HEAs): A Review. High Entrop Alloy Mater. 2022: 1–35. doi:10.1007/s44210-022-00002-8.
  • Gao MC, Carney CS, Doğan ÖN, et al. Design of refractory high-entropy alloys. JOM. 2015;67(11):2653–2669. doi:10.1007/s11837-015-1617-z
  • Eleti RR, Bhattacharjee T, Zhao L, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy. Mater Chem Phys. 2018;210:176–186. doi:10.1016/j.matchemphys.2017.06.062
  • Roy S, Dutta A, Chakraborti N. A novel method of determining interatomic potential for Al and Al-Li alloys and studying strength of Al-Al3Li interphase using evolutionary algorithms. Comp Mater Sci. 2021;190:110258. doi:10.1016/j.commatsci.2020.110258
  • Roy S, Saini BS, Chakrabarti D, et al. Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Mater Manuf Proc. 2020;35(6):611–624. doi:10.1080/10426914.2019.1660786
  • Vafaeenezhad H, Seyedein SH, Aboutalebi MR, et al. Application of constitutive description and integrated ANFIS – ICA analysis to predict hot deformation behavior of Sn-5Sb lead-free solder alloy. J Alloys Compd. 2017;697:287–299. doi:10.1016/j.jallcom.2016.12.148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.