85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Friction extrusion of AZ91/bioactive glass gradient composite

, & ORCID Icon
Pages 3025-3039 | Received 12 Mar 2023, Accepted 01 Jul 2023, Published online: 17 Jul 2023

References

  • Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. J Magn Alloys. 2017;5:286–312. doi:10.1016/j.jma.2017.08.003
  • Bommala VK, Krishna MG, Rao CT. Magnesium matrix composites for biomedical applications: a review.  Magn Alloys. 2019;7:72–79. doi:10.1016/j.jma.2018.11.001
  • He M, Chen L, Yin M, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. J Mater Res Technol. 2023;23:4396–4419. doi:10.1016/j.jmrt.2023.02.037
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28:2163–2174. doi:10.1016/j.biomaterials.2006.12.027
  • Chen B, Yin K-Y, Lu T-F, et al. AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J Mater Sci Technol. 2016;32:858–864. doi:10.1016/j.jmst.2016.06.010
  • Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg–HAP composites. J Mech Behav Biomed Mater. 2014;39:238–246. doi:10.1016/j.jmbbm.2014.07.014
  • Li S, Song S, Yu T, et al. Microstructure and fracture surfaces of carbon nanotubes/magnesium matrix composite. In: Ke W, Han E H, Han Y F, editors. Materials science forum. Beijing: Trans Tech Publ; 2005. p. 893–896.
  • Li Q, Viereckl A, Rottmair CA, et al. Improved processing of carbon nanotube/magnesium alloy composites. Compos Sci Technol. 2009;69:1193–1199. doi:10.1016/j.compscitech.2009.02.020
  • Huan Z, Leeflang S, Zhou J, et al. In vitro degradation behavior and bioactivity of magnesium-bioglass® composites for orthopedic applications. J Biomed Mater Res Part B: Appl Biomater. 2012;100:437–446. doi:10.1002/jbm.b.31968
  • Del Campo R, Savoini B, Muñoz A, et al. Processing and mechanical characteristics of magnesium-hydroxyapatite metal matrix biocomposites. J Mech Behav Biomed Mater. 2017;69:135–143. doi:10.1016/j.jmbbm.2016.12.023
  • Dutta S, Devi KB, Mandal S, et al. In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite. Materialia. 2019;5:100245. doi:10.1016/j.mtla.2019.100245
  • Yin Y, Huang Q, Liang L, et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications. J Alloys Compd. 2019;785:38–45. doi:10.1016/j.jallcom.2019.01.165
  • Gelaw M, Ramulu PJ, Hailu D, et al. Manufacturing and mechanical characterization of square bar made of aluminium scraps through friction stir back extrusion process. J Eng, Des Technol. 2018;16:596–615. doi:10.1108/JEDT-02-2018-0030
  • Yohannes G, Beri H, Ramulu PJ. Fabrication of hexagonal bar from aluminum alloy AA6063 scrap by frictional stir back extrusion on milling machine. In: Ganesh Narayanan R, Joshi S N, Dixit U S, editors. Advances in computational methods in manufacturing. Singapore: Springer; 2019. p. 733–742.
  • Sharifzadeh M, Ali Ansari M, Narvan M, et al. Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion. Trans Nonferr Met Soc China. 2015;25:1847–1855. doi:10.1016/S1003-6326(15)63791-8
  • Li J, Meng X, Li Y, et al. Friction stir extrusion for fabricating Mg-RE alloys with high strength and ductility. Mater Lett. 2021;289:129414. doi:10.1016/j.matlet.2021.129414
  • Baffari D, Buffa G, Campanella D, et al. Process mechanics in friction stir extrusion of magnesium alloys chips through experiments and numerical simulation. J Manuf Process. 2017;29:41–49. doi:10.1016/j.jmapro.2017.07.010
  • Jahani A, Jamshidi Aval H, Rajabi M, et al. Effects of Ti2SnC MAX phase reinforcement content on the properties of copper matrix composite produced by friction stir back extrusion process. Mater Chem Phys. 2023;299:127497. doi:10.1016/j.matchemphys.2023.127497
  • Jahani A, Jamshidi Aval H, Rajabi M, et al. Effects of primary sintering on microstructure and properties of friction stir back extruded Cu–Ti2SnC wire composite. Archiv Civil Mech Eng. 2023;23:136. doi:10.1007/s43452-023-00641-7
  • Li X, Zhou C, Overman N, et al. Copper carbon composite wire with a uniform carbon dispersion made by friction extrusion. J Manuf Process. 2021;65:397–406. doi:10.1016/j.jmapro.2021.03.055
  • Jahani A, Jamshidi Aval H, Rajabi M, et al. Microstructures and properties of copper matrix composite wires reinforced with Ti2SnC particles. Mater Sci Technol. 2023: 1–17. doi:10.1080/02670836.2023.2180595
  • Khorashadizade F, Abazari S, Rajabi M, et al. Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties. J Mater Res Technol. 2021;15:6034–6066. doi:10.1016/j.jmrt.2021.10.141
  • El-Rashidy AA, Roether JA, Harhaus L, et al. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28. doi:10.1016/j.actbio.2017.08.030
  • Motavallian P, Rabiee SM, Jamshidi Aval H. Investigation of microstructure and corrosion behavior of AZ91/64SiO2-31CaO-5P2O5 composite wire fabricated by friction stir back extrusion. Surf Coat Technol. 2023;464:129451. doi:10.1016/j.surfcoat.2023.129451
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi:10.1016/j.biomaterials.2006.01.017
  • Behnagh RA, Shen N, Ansari MA, et al. Experimental analysis and microstructure modeling of friction stir extrusion of magnesium chips. J Manuf Sci Eng. 2016;138:041008. doi:10.1115/1.4031281
  • Motavallian P, Rabiee SM, Jamshidi Aval H. Fabrication of new gradient AZ91-bioactive glass composite using friction stir back extrusion. Mater Today Commun. 2023;35:105808. doi:10.1016/j.mtcomm.2023.105808
  • Børvik T, Langseth M, Hopperstad OS, et al. Ballistic penetration of steel plates. Int J Impact Eng. 1999;22:855–886. doi:10.1016/S0734-743X(99)00011-1
  • Rahaman MM, Pathak A, Roy D. A thermo-visco-plastic damage model and SPH simulations of plugging failure. Mech Adv Mater Struct. 2018;25:1374–1382. doi:10.1080/15376494.2017.1286419
  • Marode RV, Pedapati SR, Lemma TA, et al. Thermo-mechanical modelling of friction stir processing of AZ91 alloy: using smoothed-particle hydrodynamics. Lubricants. 2022;10:355. doi:10.3390/lubricants10120355
  • Asadi P, Mahdavinejad RA, Tutunchilar S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater Sci Eng A. 2011;528:6469–6477. doi:10.1016/j.msea.2011.05.035
  • Li L, Gupta V, Li X, et al. Meshfree simulation and experimental validation of extreme thermomechanical conditions in friction stir extrusion. Comput Part Mech. 2021;9:789–809. doi:10.1007/s40571-021-00445-7
  • Yourdkhani M, Hubert P. Quantitative dispersion analysis of inclusions in polymer composites. ACS Appl Mater Interfaces. 2013;5:35–41. doi:10.1021/am301459q
  • Asadi P, Akbari M. Numerical modeling and experimental investigation of brass wire forming by friction stir back extrusion. Int J Adv Manuf Technol. 2021;116:3231–3245. doi:10.1007/s00170-021-07729-5
  • Akbari M, Asadi P. Optimization of microstructural and mechanical properties of brass wire produced by friction stir extrusion using Taguchi method. Proc Inst Mech Eng, Part L: J Mater: Des Appl. 2021;235:2709–2719. doi:10.1177/14644207211032992
  • Lalpoor M, Dzwonczyk JS, Hort N, et al. Nucleation mechanism of Mg17Al12-precipitates in binary Mg–7wt.% Al alloy. J Alloys Compd. 2013;557:73–76. doi:10.1016/j.jallcom.2012.12.116
  • Abd El-Rehim AF, Zahran HY, Al-Masoud HM, et al. Microhardness and microstructure characteristics of AZ91 magnesium alloy under different cooling rate conditions. Mater Res Express. 2019;6:086572. doi:10.1088/2053-1591/ab1ad6
  • Kandil A. Microstructure and mechanical properties of sicp/az91 magnesium matrix composites processed by stir casting, JES. J Eng Sci . 2012;40:255–270. doi:10.1016/j.jmrt.2021.11.005
  • Esgandari BA, Mehrjoo H, Nami B, et al. The effect of Ca and RE elements on the precipitation kinetics of Mg17Al12 phase during artificial aging of magnesium alloy AZ91. Mater Sci Eng A. 2011;528:5018–5024. doi:10.1016/j.msea.2011.03.022
  • Yousefpour F, Jamaati R, Aval HJ. Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multi-pass FSP for biomedical applications. J Mech Behav Biomed Mater. 2022;125:104894. doi:10.1016/j.jmbbm.2021.104894
  • Mena-Morcillo E, Veleva L. Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: effect of surface layer stability on electrochemical behaviour. J Magn Alloys. 2020;8:667–675. doi:10.1016/j.jma.2020.02.014
  • Cubides Y, Zhao D, Nash L, et al. Effects of dynamic recrystallization and strain-induced dynamic precipitation on the corrosion behavior of partially recrystallized Mg–9Al–1Zn alloys. J Magn Alloys. 2020;8:1016–1037. doi:10.1016/j.jma.2020.09.005
  • Abbas A, Huang S-J. Investigating the synergic effects of WS2 and ECAP on degradation behavior of AZ91 magnesium alloy. Coatings. 2022;12:1710. doi:10.3390/coatings12111710
  • Ansari MA, Behnagh RA, Narvan M, et al. Optimization of friction stir extrusion (FSE) parameters through taguchi technique. Trans Indian Inst Met. 2016;69:1351–1357. doi:10.1007/s12666-015-0686-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.