121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A visible light-sensitive argentous oxide/calcium aluminate nanocomposite photocatalyst

, , , , , & ORCID Icon show all
Pages 3040-3052 | Received 29 Apr 2023, Accepted 12 Jul 2023, Published online: 21 Jul 2023

References

  • Hermansson L. A review of nanostructured Ca-aluminate based biomaterials within odontology and orthopedics. J Korean Ceram Soc. 2018;55:95–107. doi:10.4191/kcers.2018.55.2.01
  • Mercury JMR, Aza AHD, Pena P. Synthesis of CaAl2O4 from powders: particle size effect. J Eur Ceram Soc. 2005;25:3269–3279. doi:10.1016/j.jeurceramsoc.2004.06.021
  • Chandradass J, Bae DS, Kim KH. Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process. J Non-Cryst Solids. 2009;355:2429–2432. doi:10.1016/j.jnoncrysol.2009.08.032
  • Mandić V, Kurajica S. The influence of solvents on sol-gel derived calcium aluminate. Mater Sci Semicond Process. 2015;38:306–313. doi:10.1016/j.mssp.2015.01.004
  • Madej D, Sieroń K, Kruk A. Synthesis and performance of aluminous cements containing zirconium and strontium as alternatives to the calcium aluminate cements designed for the production of high performance refractories. Cement Concrete Comp. 2022;130:104518. doi:10.1016/j.cemconcomp.2022.104518
  • Madhusudhana N, Yogendra K, Mahadevan KM, et al. Photocatalytic degradation of coralene dark red 2B dye using calcium aluminate (CaAl2O4) catalyst. Environ Sci: Indian J. 2011;6:159–163. doi:10.13140/RG.2.2.12167.04005.
  • Nagaoka T, Sato K, Hotta Y, et al. Extrusion behaviour of mono-calcium aluminate (CaAl2O4) paste. J Ceram Soc Jpn. 2008;116:239–241. doi:10.2109/jcersj2.116.239
  • Freeda M, Subash TD. Comparison of photoluminescence studies of lanthanum, terbium doped calcium aluminate nanophosphors (CaAl2O4: La, CaAl2O4: Tb) by sol-gel method. Mater Today: Proc. 2017;4:4302–4307. doi:10.1016/j.matpr.2017.02.134
  • Ruttanapun C, Phrompet C, Tuichai W, et al. Influence of free electron charge and free extra framework anions in calcium aluminate@rGO (CA@rGO) cement composites with enhanced dielectric and electrochemical properties. J Taiwan Inst Chem Eng. 2021;127:334–348. doi:10.1016/j.jtice.2021.08.007
  • Smok W, Zaborowska M, Tański T, et al. Novel In2O3/SnO2 heterojunction 1D nanostructure photocatalyst for MB degradation. Opt Mater. 2023;139:113757. doi:10.1016/j.optmat.2023.113757
  • Kim Y, Irie H, Hashimoto K. A visible light sensitive tungsten carbide/tungsten trioxide composite photocatalyst. Appl Phys Lett. 2008;92:182107. doi:10.1063/1.2924276.
  • Hu XX, Hu C, Wang R. Enhanced solar photodegradation of toxic pollutants by long-lived electrons in Ag2O-Ag nanocomposites. Appl Catal B. 2015;176-177:637–645. doi:10.1016/j.apcatb.2015.04.040
  • Jaiswal A, Kumai N, Kumar A, et al. Enhanced photodegradation of azo dye by Ag2O/SnO2@g-C3N4 nanocomposite. Mater Chem Phys. 2022;281:125884. doi:10.1016/j.matchemphys.2022.125884
  • Elsellami L, Dappozze F, Houas A, et al. Effect of Ag+ reduction on the photocatalytic activity of Ag-doped TiO2. Superlattice Microstruct. 2017;109:511–518. doi:10.1016/j.spmi.2017.05.043
  • Shen JC, Zeng HY, Chen CR, et al. A facile fabrication of Ag2O-Ag/ZnAl-oxides with enhanced visible-light photocatalytic performance for tetracycline degradation. Appl Clay Sci. 2020;185:105413. doi:10.1016/j.clay.2019.105413
  • Liu SS, Wang N, Zhang YC, et al. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation. J Hazard Mater. 2015;284:171–181. doi:10.1016/j.jhazmat.2014.10.054
  • Suganya R, Revathi A, Sudha D, et al. Evaluation of structural, optical properties and photocatalytic activity of Ag2O coated ZnO nanoparticles. J Mater Sci-Mater Electron. 2022;33:23224–23235. doi:10.1007/s10854-022-09086-9
  • He HQ, Zhang TC, Ouyang L, et al. Superwetting and photocatalytic Ag2O/TiO2@CuC2O4 nanocomposite-coated mesh membranes for oil/water separation and soluble dye removal. Mater Today Chem. 2022;23:100717. doi:10.1016/j.mtchem.2021.100717
  • Chu HP, Liu XJ, Liu JY, et al. Synergetic effect of Ag2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO2. Mater Sci Eng B. 2016;211:128–134. doi:10.1016/j.mseb.2016.06.010
  • Sahu P, Das D. Two-step visible light photocatalytic dye degradation phenomena in Ag2O-impregnated ZnO nanorods via growth of metallic Ag and formation of ZnO/Ag0/Ag2O heterojunction structures. Langmuir. 2022;38:4503–4520. doi:10.1021/acs.langmuir.1c02860
  • Liu DD, Wu ZS, Tian F, et al. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J Alloys Compd. 2016;676:489–498. doi:10.1016/j.jallcom.2016.03.124
  • Bortz M, Ohuchi FS. An X-ray photoelectron spectroscopy study of the interfacial relations between titanium and cordierite-based ceramic thin films. J Appl Phys. 1988;64:2054–2058. doi:10.1063/1.341712.
  • Ohbayashi K, Yoshida K, Anma M, et al. Bismuth valence studies of As-grown superconducting Bi-Sr-Ca-Cu-O thin films with Tc(zero) from 98 K to 66 K. J Appl Phys Part 2. 1992;31:L953. doi:10.1143/JJAP.31.L953.
  • Kohiki S, Wada T, Kawashima S, et al. Photoemission from single-crystalline Bi-Sr-Ca-Cu-O. Phys Rev B. 1988;38:7051–7053. doi:10.1103/PhysRevB.38.7051
  • Van TA, Folkerts W, Haas C. Electronic structure and photoelectron spectra of calaverite, AuTe2. J Phys: Condens Matter. 1990;2:8733–8740. doi:10.1088/0953-8984/2/44/001.
  • Olya ME, Vafaee M, Jahangiri M. Modeling of acid dye decolorization by TiO2-Ag2O nano-photocatalytic process using response surface methodology. J Saudi Chem Soc. 2017;21:633–642. doi:10.1016/j.jscs.2015.07.006
  • Xu W, Wang SQ, Zhang QY, et al. Abnormal oxidation of Ag films and its application to fabrication of photocatalytic films with a-TiO2/h-Ag2O heterostructure. J Phys Chem C. 2017;121:9901–9909. doi:10.1021/acs.jpcc.7b01229
  • Zhao XL, Su YC, Qi XT, et al. A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function. ACS Sustainable Chem Eng. 2017;5:6148–6158. doi:10.1021/acssuschemeng.7b01040
  • Zhou WJ, Liu H, Wang JY, et al. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces. 2010;2:2385–2392. doi:10.1021/am100394x
  • Tao FH, Xue ZY, Huang JF, et al. Rb(Dy)-doped SrSn(OH)6 for the photodegradation of gentian violet. J Mater Sci-Mater Eletron. 2022;33:17343–17360. doi:10.1007/s10854-022-08612-z
  • Chen CS, Mei W, Wang C, et al. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. J Alloys Compd. 2020;826:154122. doi:10.1016/j.jallcom.2020.154122
  • Mirsalari SA, Nezamzadeh-Ejhieh A. Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents. Sep Purif Technol. 2020;250:117235. doi:10.1016/j.seppur.2020.117235
  • Ghattavi S, Nezamzadeh-Ejhieh A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: experimental design, bandgap study, and characterization of the catalyst. Int J Hydrogen Energy. 2020;45:24636–24656. doi:10.1016/j.ijhydene.2020.06.207
  • Deng AJ, Xue ZY, Yu CH, et al. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J Mater Res Technol. 2022;19:1073–1089. doi:10.1016/j.jmrt.2022.05.104
  • Chen CS, Xie XD, Zhao GJ, et al. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct Mater Lett. 2013;6:1350062. doi:10.1142/S1793604713500628.
  • Ghattavi S, Nezamzadeh-Ejhieh A. A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of methylene blue under visible light irradiation. Desalin Water Treat. 2019;166:92–104. doi:10.5004/dwt.2019.24638
  • Liang EJ, Ye XL, Kiefer W. Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation. J Phys Chem A. 1997;101:7330–7335. doi:10.1021/jp971960j
  • Liu RM, Kang YP, Zi XF, et al. The ultratrace detection of crystal violet using surface enhanced Raman scattering on colloidal Ag nanoparticles prepared by electrolysis. Chin Chem Lett. 2009;20:711–715. doi:10.1016/j.cclet.2009.02.001
  • Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: A review. Water Resour. 2010;44:2997–3027. doi:10.1016/j.watres.2010.02.039
  • Chen CS, Xie XD, Cao SY, et al. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater Sci-Poland. 2015;33:460–469. doi:10.1515/msp-2015-0083
  • Qu JN, Du Y, Ji PH, et al. Fe, Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation. J Alloys Compd. 2021;881:160391. doi:10.1016/j.jallcom.2021.160391
  • Xiong J, Zeng HY, Peng JF, et al. Fabrication of Cu2O/ZnTi-LDH p-n heterostructure by grafting Cu2O NPs onto the LDH host layers from Cu-doped ZnTi-LDH and insight into the photocatalytic mechanism. Comp Part B: Eng. 2023;250:110447. doi:10.1016/j.compositesb.2022.110447
  • Xiong J, Zeng HY, Chen CR, et al. Conjugated hollow polyaniline/CuBi2O4 composite with enhanced photocatalytic activity under visible-light. Surface Interface. 2022;29:101804. doi:10.1016/j.surfin.2022.101804
  • Theerthagiri J, Senthil RA, Malathi A, et al. Synthesis and characterization of a CuS-WO3 photocatalyst for enhanced visible light photocatalytic activity. RSC Adv. 2015;5:52718–52725. doi:10.1039/C5RA06512G.
  • Chen HJ, Wang Z, Xue ZY, et al. Constructing a Z-scheme Bi2O3/In2O3 heterojunction for efficient photocatalytic degradation of rhodamine B. Cryst Res Technol. 2020;55:2000093. doi:10.1002/crat.202000093
  • Tao FH, Li FY, Huang JF, et al. A general hydrothermal growth and photocatalytic performance of barium tin hydroxide/tin dioxide nanorods. Cryst Res Technol. 2022;57:2100156. doi:10.1002/crat.202100156
  • Xue JJ, Ma SS, Zhou YM, et al. Facile synthesis of Ag2O/N-doped helical carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Adv. 2015;5:3122–3129. doi:10.1039/C4RA13083A.
  • Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral. 2000;85:543–556. doi:10.2138/am-2000-0416
  • Guo CX, Yang HB, Sheng ZM, et al. Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed. 2010;49:3014–3017. doi:10.1002/anie.200906291
  • Alhokbany N, Ahamad T, Alshehri SM. Fabrication of highly porous ZnO/Ag2O nanoparticles embedded in N-doped graphitic carbon for photocatalytic degradation of tetracycline. J Environ Chem Eng. 2022;10(3):107681. doi:10.1016/j.jece.2022.107681
  • Shi TT, Hao XY, Ma JY, et al. Preparation of Ag2O/TiO2/fly-ash cenospheres composite photocatalyst. Mater Lett. 2016;183:444–447. doi:10.1016/j.matlet.2016.07.079
  • Kuvarega AT, Krause RWM, Mamba BB. Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C. 2011;115:22110–22120. doi:10.1021/jp203754j
  • Wei N, Cui HZ, Song Q, et al. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl Catal B. 2016;198:83–90. doi:10.1016/j.apcatb.2016.05.040
  • Tiwari M, Joshi GC. Starch-assisted synthesis of WO3 nanoparticles for degradation of crystal violet dye. Mater Sci Technol. 2023;39:1124–1136. doi:10.1080/02670836.2022.2162196.
  • Xiong J, Zeng HY, Peng JF, et al. Construction of ultrafine Ag2S NPs anchored onto 3D network rodlike Bi2SiO5 and insight into the photocatalytic mechanism. Inorg Chem. 2022;61:11387–11398. doi:10.1021/acs.inorgchem.2c01665

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.